Vector Math, Vector Embedding & Vector Database

Practical Foundations untuk Praktisi Machine Learning & Al

Wuriyanto

https://wuriyan.to

https://wuriyan.to

Apa itu Vector

Dari sudut pandang Matematika (Math, Linear Algebra) dan Fisika (Physics), definisi Vector adalah objek yang memiliki besar (magnitude) dan arah
(dlirection).

Definisi sederhana: Vector adalah objek yang merepresentasikan suatu entitas menggunakan lebih dari satu nilai. Mengapa lebih dari satu nilai?
Sebab Entitas di dunia nyata bersifat Multidimensional (tidak hanya memiliki satu sifat saja).

Contoh:

Manusia memiliki: tinggi badan, berat, umur | contoh format dalam Vector [180, 78, 26]

Warna (format RGB) biasanya 3 atau 4 dimensi : Red, Green, Blue, dan Alpha (untuk mengatur opacity) | contoh format dalam Vector [138, 26, 18, 0.5]
Vector memungkinkan:

° setiap dimensi menyimpan informasi berbeda

° kombinasi dimensi membentuk identitas entitas

Secara Matematis: v=(x1,x2,...,xn) e
Direction

Teorema Pythagoras (Pythagorean Theorem)

Teorema Pythagoras menjelaskan hubungan antara panjang sisi pada segitiga siku-siku (right angled triangle).

c = va? + b

Contoh:
C2 — 42 _|_ 32
c = V42 4 32
c=29

B
Trigonometry ’ sin 0 = a/c
2 cos 0 =b/c
Trigonometry adalah cabang Matematika theta 0 ’
yang mempelajari hubunggn sisi dap sudut A | Adjacent [] C tan 0 = a/b
segitiga menggunakan rasio seperti sine b
(sin), cosine (cos), tangent (tan) dan . . _
fungsi inverse-nya, sepert Arcsine, KL ko o e beberaps persaraan dates
Arccosine dan Arctangent. segitiga tersebut @ = 36°, nilai hypotenuse atau ¢ =
50 dan nilai yang ingin kita ketahui adalah opposite
Trigonometry sangat penting bagi banyak atau a. Sehingga kita bisa menggunakan sin(6) =
industri. Sebut saja penerbangan, kelautan, 50 a/c.
otomasi mesin. Dan tentu saja sangat ?
penting pada bidang lImu Komputer, seperti sin(@) = alc
pada pengolahan citra digital, Computer 36°) e
vision, Al, Machine Learning, Game engine. sin(36)=°aI5°
a =sin(36°) . 50
Kita tidak akan membahas detail tentang 50 sin(36°) = 0.58
Trigonometri, hanya akan kita bahas sedikit 29
beberapa persamaan yang akan kita a=0.58 x 50
gunakan sesuai tema materi ini. 36°
l a=29

Trigonometry (inverse function)

91soddp

B

theta 6)
Adjacent
A \ jacen |— C
b
sin 0 = a/c

Sfunction inverse function
sin 0 =a/c 0 = arcsine(a/c)
cos 0 =b/c 0 = arccosine(b/c)

tan 60 = a/b 0 = arctangent(a/b)

50

29

36°

Sama halnya, misal ketika kita ingin mengetahui

berapa sudut @ (theta), kita bisa memanfaatkan
fungsi inverse trigonometri. Pada gambar disamping
diketahui nilai hypotenuse atau c = 50, opposite
atau a = 29 dan nilai yang ingin kita ketahui

adalah sudut @ (theta). Kita masih menggunakan
persamaan sin 0 = a/c.

sin(B) = alc
sin(B) = 29/50
29/50 = 0.58
sin(8) = 0.58

0 = arcsine(0.58)

6 =36°

Scalar vs Vector

Dari sudut pandang Matematika (Math) dan Fisika (Physics), Scalar adalah objek yang hanya memiliki besaran
(magnitude) saja. Berbeda dengan Vector, yang memiliki besaran (magnitude) dan arah (direction).

Scalar Vector
Jumlah Nilai Satu Banyak Nilai
Arah Tidak punya arah Punya arah
Contoh Suhu (30°) Akselerasi (5 km/h) ke arah

timur

Representasi Vector

Secara fundamental Vector bisa direpresentasikan melalui sudut pandang Geometri (Geometry) dan Aljabar (Algebra).

Pada sudut pandang Geometry, Vector dianggap sebagai sebuah panah(arrow) yang ada pada ruang 2D, 3D dan ND.

Pada sudut pandang Aljabar (Algebra),

Vector direpresentasikan dengan daftar

angka yang berurut (ordered list of number).
(5.4) | V= (X’ y)

V=(xY, 2)

\ ' V=(x1Y,2....,N)

V=[5,4]

0.0) ! 2 3 4 5 6 7 8 | V = [5’ 4’ 3]

V=1[0.4,60.66,0.7,1, 0.32]

Besaran/Panjang (Magnitude) Vector pada ruang 2 Dimensions

Untuk menghitung besaran/panjang (Magnitude) dari sebuah Vector, kita perlu mencari akar kuadrat dari penjumlahan dari setiap komponen Vector yang
sudah di kuadratkan.

Pada ruang 2 Dimensi seperti disamping, Vector memiliki 2 komponen, yaitu x dan y. Atau pada
pembahasan Representasi Vector, bisa kita tuliskan dengan:

x=5
y=4
V =[5, 4]

Jika kita perhatikan, Vector dan komponen-komponennya membentuk Segitiga siku-siku. Sehingga pada
dasarnya kita bisa menghitung besar/panjang (Magnitude) Vector dengan formula Teorema Pythagoras
(Pythagorean Theorem).

? =a* +b? [[m|| = V5% + 42 Sehingga Vector:
2 12 — A
= Va2 + b2 ||m|| = 6.4
coveTe | V=[54]
[m]| = Va? + y*

Memiliki besaran/panjang (Magnitude) = ~6.4

Besaran/Panjang (Magnitude) Vector pada ruang 3 Dimensions

Untuk menghitung besaran/panjang (Magnitude) dari sebuah Vector pada ruang 3D kita tetap bisa menggunakan Pythagorean Theorem.

Pada ruang 3 Dimensi seperti disamping, Vector memiliki 3 komponen, yaitu x, y dan z. Atau pada pembahasan
Representasi Vector, bisa kita tuliskan dengan:

V=15,4,3]

Jika kita perhatikan, Vector dan komponen-komponennya membentuk Segitiga siku-siku. Sehingga pada dasarnya kita
bisa menghitung besar/panjang (Magnitude) Vector dengan formula Teorema Pythagoras (Pythagorean Theorem).

PF=a++* |m|=V5

d=vVaZ + 2 +c2 |m||=7 V=043

Memiliki besaran/panjang (Magnitude) =
~7

Sehingga Vector:

Besaran/Panjang (Magnitude) Vector pada ruang N Dimensions

Untuk menghitung besaran/panjang (Magnitude) dari sebuah Vector pada ruang ND kita tetap bisa menggunakan Pythagorean Theorem.

V =[x1,x2, x3, xn]

Bentuk General:

|m|| = Vz12 + 222 + 232.....2n2

mn

Im|l = | > di?

1=1

Unit Vector dan Vector Normalization

Unit Vector Part 1

|9 =

1

Unit Vector adalah Vector yang memiliki besaran/panjang (magnitude) = 1.

Untuk mendapatkan Unit Vector, lakukan pembagian setiap elemen Vector-nya
dengan magnitude-nya. Proses ini disebut juga dengan Vector Normalization.

Vector source:

v=1[v1,v2,v3, ... vn]

. v
/U = —
]|

dimana:

A

/U Unit Vector

/U Vector Source

Vector Magnitude

]|

Bagi setiap elemen pada Vector
source dengan magnitude-nya:

1

Uo }

Us

' ¥
2 U,
1l ol

D = [U1

71
U n

]

]

Unit Vector Part 2

Contoh Mendapatkan Unit Vector

Vector source:

v =3, 4]
| 'U| =V 32 —f— —12
ol =5
X 3 4

' = [g 5]

o = [0.6,0.8]

08

0.6

0.4

0:2

-02

-0:2

02

04

06

0.8

Unit Vector Part 3

Pada gambar dibawah, Vector Source (kiri), dan Unit Vector-nya (Kanan)
arah (direction) tidak berubah, meskipun Vector sudah di normalisasi ke

Contoh Mendapatkan Unit Vector

Vector source:

v=1[3,4]

o] =5

X 3 4

D= [;, ;}
D)

o = [0.6,0.8]

dalam Unit Vector.

-6

08

0.6

0.4

0:2

-0.2

-0:2

02

04

06

0.8

Unit Vector Part 4

Makna intutif Unit Vector

- Unit Vector hanya merepresentasikan arah (direction)
- Fokus pada arah (direction) bukan besar/panjang (magnitude)
- Besarnya sudah dinormalisasi (dibagi dengan magnitude-nya)

Unit Vector Part 5

Mengapa Unit Vector penting?

Mengisolasi arah (direction), panjang dihilangkan dan arah tetap (arah lebih penting).
° Perbandingan adil, dalam artian: Vector lebih besar bukan berarti lebih penting(bobot lebih tinggi).
Unit Vector memungkinkan perbandingan makna tanpa dipengaruhi oleh besarnya nilai.

Contoh kasus NLP (Natural Language Processing).
A= “Saya suka Kopi”
B = “Saya suka Kopi, tapi Kopi Arabika

Setelah melalui proses Embedding, misalnya menggunakan model modern seperti Sentence Transformers atau OpenAi Embedding akan menghasilkan representasi Vector
dari dua kalimat diatas.

A=10.21,0.30,0.12, 0.40, ...]
B =[0.42, 0.58, 0.25, 0.80, ...]
Observasi:

Kalimat A dan B memiliki dimensi vector yang sama(Sentence Transformers: 384 / 768, Open Ai Embedding: 1536 / 3072). Namun, magnitude vector bisa berbeda.

° Jika dibandingkan langsung: Dot Product besar, B terlihat lebih penting. Padahal secara topik sama, yaitu tentang “Kopi”.
Perbedaan ini dipengaruhi oleh:
o spesifikasi makna
o intensitas representasi semantik. Pada kalimat B kata “Kopi” banyak dipasangkan dengan kata penting lain, misalnya “Arabika”. Sehingga banyak value Embedding lebih

besar di dimensi tertentu.

Unit vector memastikan perbandingan dilakukan pada makna, bukan pada kekuatan aktivasi embedding.

Sparse Vector dan Dense Vector

Sparse Vector dan Dense Vector Part 1

Sparse Vector

Sparse Vector adalah Vector yang sebagian besar elemennya bernilai nol. Hanya sedikit dimensi yang memiliki nilai tidak nol.

Karakteristik: Memiliki dimensi yang sangat besar (bisa ribuan hingga jutaan), namun sangat sedikit data aktif di dalamnya.
Contoh Representasi: Bag-of-Words (BoW) atau TF-IDF.

e Cara Kerja: Jika kita memiliki kamus berisi 100.000 kata unik, dan satu kalimat hanya berisi 5 kata, maka Vector untuk kalimat
tersebut akan memiliki 99.995 elemen bernilai nol dan hanya 5 elemen yang memiliki nilai.

Kelebihan & Kekurangan Sparse Vector

e Kelebihan: Sangat mudah diinterpretasikan (setiap dimensi mewakili kata tertentu secara eksplisit).
e Kekurangan: Membutuhkan ruang penyimpanan yang besar jika tidak dikompresi, dan tidak bisa menangkap hubungan makna
(sinonim) antar kata.

Sparse Vector dan Dense Vector Part 2

Contoh Sparse Vector (TF-IDF/One-Hot)

Misalkan kita memiliki "Kosakata" (Vocabulary) yang terdiri dari 5 kata: ["apel”, "buku", "ceri", "durian", "es"]
Bayangkan kita ingin merepresentasikan kalimat: "Apel dan Ceri".

Karena kata "dan" tidak ada dalam kamus kita, maka Vector-nya hanya akan melihat kata yang tersedia. Vector ini akan menandai 1
untuk kata yang muncul dan 0 untuk yang tidak.

Vector-nya:

[1,0,1,0,0]

Indeks 0 (apel): 1 (Muncul)

Indeks 1 (buku): 0 (Tidak muncul)
Indeks 2 (ceri): 1 (Muncul)

Indeks 3 (durian): 0 (Tidak muncul)
Indeks 4 (es): 0 (Tidak muncul)

Dalam data yang nyata (misal jutaan kata), deretan angka 0O ini akan sangat panjang, itulah sebabnya disebut Sparse (jarang).

Sparse Vector dan Dense Vector Part 3

Dense Vector

Dense Vector adalah Vector yang sebagian besar atau seluruh elemennya memiliki nilai bukan nol. Biasanya nilainya berupa angka
desimal (floating point).

e Karakteristik: Memiliki dimensi yang jauh lebih kecil dan tetap (misalnya 128, 256, atau 768 dimensi), namun setiap dimensi
mengandung informasi "padat".

e Contoh Representasi: Word Embeddings (Word2Vec, GloVe) atau Neural Embeddings (BERT, OpenAl Embeddings).

e Cara Kerja: Alih-alih memetakan kata ke indeks kamus, dense vector memetakan data ke dalam ruang Vector kontinu di mana
posisi Vector tersebut ditentukan oleh konteks dan makna.

Kelebihan & Kekurangan Dense Vector

e Kelebihan: Mampu menangkap hubungan semantik. Misalnya, dalam ruang dense vector, kata "Raja" dan "Ratu" akan berada di
posisi yang berdekatan.

e Kekurangan: Sulit diinterpretasikan secara langsung oleh manusia (kita tidak tahu apa arti spesifik dari dimensi ke-45 dalam
sebuah embedding).

Sparse Vector dan Dense Vector Part 4

Contoh Dense Vector

Dalam Dense Vector, kata tidak lagi diwakili oleh posisi indeks di kamus, melainkan oleh sekumpulan angka desimal yang mewakili
"makna" atau fitur tertentu dalam ruang multidimensi.

Misalnya, kata "Apel™ dalam model Al seperti Sentence Transformers dan OpenAi Embedding mungkin direpresentasikan seperti ini
(biasanya panjangnya 384, 768, atau lebih):

Vector-nya:

[0.12,-0.59, 0.88, 0.01, -0.34, ...]

e Setiap angka di atas tidak mewakili kata spesifik, melainkan fitur abstrak (seperti tingkat "kemanisan", "kemerahan", atau
"kategori buah").

e Semua posisi terisi oleh angka (tidak ada nol yang dominan), itulah sebabnya disebut Dense (padat).

Operasi Vector | Penjumlahan Vector (Vector Addition) Part 1

Menjumlahkan 2 buah Vector cukup mudah.
Dengan catatan 2 Vector tersebut mempunyai
dimensi yang sama. Seperti gambar di samping,
Vector a ditambahkan dengan Vector b akan
menghasilkan Vector c. Menjumlahkan satu
Vector dengan Vector lainnya akan merubah
magnitude dan direction dari Vector tersebut.

Operasi Vector | Penjumlahan Vector (Vector Addition) Part 2

Contoh:
a=[3,4] ' °
b=[2,-1]

Vector ¢ berwarna orange adalah hasil penjumlahan Vector a
dan vector b.

c.x=a.x+b.x
c.y=a.ytb.y

c.x=3+2=5

c.y=4+(—-1)=3 3

Sehingga menghasilkan Vector baru,

yaitu vector

¢ = (5, 3). | Ly

Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 1

Perkalian Vector dengan scalar biasanya bertujuan untuk memperbesar atau memperkecil magnitude dan membalik
(flipping) suatu Vector
Contoh mengalikan Vector dengan positif scalar 2: . 6
a=[3,4]

scalar = 2
4 ! ! (3-4)—

-1 0 (0_0) 1 2 3 4 5

Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 2

Mengalikan Vector a dengan scalar 2 cukup mudah. Kalikan setiap elemennya dengan scalar 2.

bx=3%*2

by=4%*2

Sehingga menghasilkan Vector baru, yaitu vector b. I A 1 I ¥ (3-

Vector b = (6, 8). | s

Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 3

Perkalian Vector dengan negative scalar. Mengalikan Vector dengan negative scalar =1 akan membalik direction
sebuah Vector.
Contoh mengalikan Vector dengan negative scalar -1: | 6
a=1[3,4]

scalar = -1
4 ! ! (3-4)—

-1 0 (00) 1 2 3 4 5

Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 4

Mengalikan Vector a dengan negative scalar -1 cukup mudah. Kalikan setiap elemennya dengan scalar -1.

bx=3%(-1)
by=4*(-1)

Sehingga menghasilkan Vector baru, yaitu Vector b.

1

Vector b = (-3, -4).

(-3,-4)

Dot Product

Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 1

Perkalian Vector dengan Vector (Dot Product) menghasilkan sebuah scalar, sehingga disebut juga scalar product. Dot
Product digunakan untuk mengukur kemiripan dua Vector. Untuk menghitung Dot Product, ada dua cara yang bisa

dilakukan.

Cara pertama kita bisa mengalikan
magnitude dua Vector tersebut dengan nilai
cos(6), dimana 8 adalah sudut antara dua
Vector.

A.B = [[A[[||B]| cos(#)

Cara kedua kita bisa menjumlahkan product
dari setiap elemennya

Bentuk umum untuk N

Dimensions Vector.

=[a1, a2, a3, ..., an

=[b1, b2, b3, ...,

]
bn]

AB=AxzxBax+ Ay x By

AB = f Z[) cos(d)
\ =

_ S an
\ &

Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 2

Contoh Dot Product:

A=[3,3]
B =4, 1]
AB=3*4+3*1
AB =15

Dot Product dari Vector A dan Vector B = 15

Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 3

Properti dari Dot Product

+ - # « "
My — |.UA Vi) J a
=|0][4
5
(V] (v v1y)
Dot Product bernilai 0 ketika sudut 7 =Uo0)i(e) (0.4)
4
antara 2 Vector = 90° (8} v vockr2
@ vy=(4,0) o
/ Label
Vo = [0. 1'?..\'}
2
=(o|[4
Vo = |’0A 1'?._»'-‘
=|o][0 .
@ (v20 vy)
Label = (0,0) (4.0 2 1) 1 2
P Vector addition v1+v2
54
Dot Product
ab=ax'b.x+ay'b.y |])
A=V X VX VY VY
2 =|o 3

Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 4

Properti dari Dot Product

Dot Product bernilai lebih dari > 0
(positive) ketika sudut antara 2
Vector < (kurang dari) 90°

o
®
©

=

[o

V= [0V

(sses)

Label

W vector v2

vy = (4. 1)
V Label

Vo = [0. 1'2..\'}

Vo = [0. \'2.)'}

(¥2073)

Label

b Vector addition v1+v2

Dot Product
ab=ax*b.x+a.y*by

A=V X VX + vy vy

E -

= (0,0) (3.3)

= (0,0) (41)

Il
-
o

Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 5

Properti dari Dot Product

4 'S & « . | | 6
Vi =0V 2
=10]||2
(vevy)
o . Labe = (0,0) (-2.2)
Dot Product bernilai kurang dari < -~ p— T i i EEEE
0 (negative) ketika sudut antara 2 o
. . v,=1(4,0 | | |
Vector > (lebih dari) 90° by :
Vor = [0~ "2--‘] | | S j). 2
=0|4
Voy= [OA "21"]
=10]|[0
Q (‘VZY' Vo) 4 3 -2 1 0
Labe = (0,0) (40)

) Vector addition v1+v2
Dot Product
ab=ax'b.x+a.y'by

d =V X VX + V.Y vy

=« - &8

Cross Product

Operasi Vector | Perkalian Vector Silang (Cross Product) Part 1

Perkalian Vector silang menghasilkan Vector baru, tidak seperti Dot Product, yang menghasilkan sebuah scalar.
Operasi Cross Product hanya bisa dilakukan pada sistem koordinat 3 Dimensi, sehingga hampir tidak pernah
dimanfaatkan dalam dunia Machine Learning dan Al. Cross Product biasanya banyak digunakan pada Game Engine
dan Robotic.

Cara pertama kita bisa mengalikan Cara kedua kita bisa mengalikan silang
magnitude dua Vector tersebut dengan nilai setiap elemen pada dua Vector, kemudian
sin(6), dimana 8 adalah sudut antara dua melakukan operasi pengurangan dari setiap
Vector. hasil perkalian silang tersebut.

A x B = ||A||| B|| sin(6) A=l[a, b, c] B=[d ef]

X

A x B = [(bf - ce), (cd - af), (ae - bd)]

Operasi Vector | Perkalian Vector Silang (Cross Product) Part 2

Contoh Cross Product:

4 s & «
G o i -
' by, =1[00.0x]
=[lo][0][4
A=[1,2 3] ‘ by = [0.0,65]
=[0||0]5
B=1[4,5,6] b, =[00bz]
=[0][0][e
AxB=1[(2*6)-(3*5),(3*4)-(1*6),(1*5)-(2*4)] 2
Q (bn‘ bly blz)
AxB=[12-15,12-6,5- 8] =0:0.0)][(0,0,0)]| (4.5:6)
° ¢ = ((ay*b.z) — (az*by)(a.z*bx) — (ax*b.z)(ax*hy) — (a.y*b.x))
Cross Product dari Vector A dan Vector B menghasilkan Vector =|(-3.6,-3)
baru @ b vectorc
=[-3,6,-3] o
=<3
cy
=[6

Vector Metrics dan Vector Similarity

Vector Similarity

Vector Similarity adalah proses mengukur seberapa mirip dua koordinat data yang direpresentasikan menggunakan
Vector dalam ruang multidimensi. Untuk mengukur seberapa mirip dua Vector kita menggunakan apa yang disebut
sebagai Vector Metrics. Vector Metrics yang paling umum digunakan adalah Euclidean Distance(L2 Distance),
Cosine Similarity, Cosine Distance, dan Dot Product/Inner Product (sudah kita bahas pada section sebelumnya).

Euclidean Distance (L2 Distance) Part 1

Euclidean Distance adalah Vector Metrics based on Teorema Pythagoras (Pythagorean Theorem). Mengukur
kesamaan 2 Vector dengan Euclidean Distance itu seperti mengukur jalur terpendek dan terlurus dari 2 buabh titik.

Jika merujuk kembali ke persamaan Teorema Pythagoras, persamaan
Euclidean Distance tidak jauh berbeda. Persamaan ini hanya bentuk
ekstensi dari persamaan Teorema Pythagoras untuk N Dimensions.

Persamaan Teorema Pythagoras (Pythagorean Theorem) Euclidean Distance untuk N Dimensions.

Dimana p dan q adalah 2 Koordinat Vector

/92 2
C=\Vva" +— 1)"

Euclidean Distance (L2 Distance) Part 2

Untuk memahami kenapa p (Koordinat Vector 1) dikurangi terlebih dahulu dengan q (Koordinat Vector 2) sebelum melakukan
perhitungan lebih lanjut pada persamaan Euclidean Distance, kita akan simulasikan pada Vector space 2 Dimensions.

n

E(p.q) = | > _ (i — @)’

1=1
Jika kita memiliki 2 Vector, p dan q: ‘ ‘ ‘ ‘ ’ p
p=16,4] I T
q=1[51]
Kita akan melakukan operasi pengurangan pada Vector p dengan q
R=[(p1-4a1), (p2-q2)]

R=[6-5) (4-1)

R=[1,3] X 0

Hasil R (garis merah) adalah hasil ploting dari koordinatR, x =1,y = 3.

Euclidean Distance (L2 Distance) Part 3

Koordinat R jika kita gambarkan penuh akan menjadi segitiga siku-siku (right angled triangle), pada gambar sebelah
kanan.

Euclidean Distance (L2 Distance) Part 4

Koordinat R jika kita gambarkan penuh dan kita tempatkan pada posisi koordinat q dan p sebagai origin, maka akan mensimulasikan
dengan lebih jelas lagi garis mana sebenarnya yang akan kita ukur untuk Vector Metrics Euclidean Distance. Kemudian garis
berwarna biru itulah yang akan kita tetapkan sebagai Euclidean Distance dari Vector p dan Vector q.

E(p.q) =

Menggunakan contoh sebelumnya, jika kita memiliki 2

. | | | | | o Vector, p dan q:
77777 . p=16,4]
2 q=1[5,1]
| E(p.q) = /(6 5)° + (4 - 1)?
| T E(p,q) =3.16

Sehingga distance dari p ke q = ~3.16

Euclidean Distance (L2 Distance) Part 5

Contoh mengukur kemiripan Vector dengan beberapa
Vector lain menggunakan Euclidean Distance. | 10

Katakanlah kita mempunyai 2 koordinat pada dataset yang kita miliki.
b=[12, 11]

c=[10, 0. 5]

Kemudian kita mempunyai data koordinat baru,

Yaitu:

a=17,3]

Kita akan ukur seberapa dekat data-data yang ada di dataset dengan data | 2
baru a menggunakan Euclidean Distance.

Jarak dari a ke b.

dab =\(12 =)2 + (11 - 3)°
dab = 9.43

Jarak dari a ke ¢
o= \/(10 s T (05— 3 Jarak Vector a ke b = 9.43 dan Vector a ke ¢ = 3.90. Sehingga bisa disimpulkan,
dac = 3.90 jarak a ke ¢ lebih dekat dari jarak a ke b, seperti yang terlihat pada gambar diatas.

Cosine Distance dan Cosine Similarity Part 1

Cosine Distance dan Cosine Similarity adalah Vector Metrics yang mengukur kesamaan 2 Vector berdasarkan sudut
(angle) function Cos (Cosine) antara 2 Vector. Berbeda dengan Euclidean Distance atau Dot Product yang
bergantung pada besaran/panjang (magnitude) untuk menyatakan 2 Vector memiliki kemiripan. Cosine Distance dan
Cosine Similarity menggunakan sudut (angle) untuk menyatakan 2 Vector memiliki kemiripan. Sehingga pada Cosine
Distance dan Cosine Similarity, arah (direction) lebih penting dari pada besaran/panjang(magnitude).

Cosine Distance dan Cosine Similarity Part 2

Pada persamaan Cosine Similarity dibawah ini akan menghasilkan nilai -1 sampai 1. Cosine Similarity menyatakan
bahwa semakin besar nilai cos(8), semakin mirip 2 Vector tersebut.

Jika Nilai cos(0) = 1, menandakan 2 Vector searah, mirip dari sisi arah (direction).
Jika Nilai cos(8) = 0, (sudut 90°, Vector tegak lurus/perpendicular), menandakan 2 Vector tidak mirip.

Jika Nilai cos(08) = -1, (sudut 180°, Vector berlawanan arah), menandakan 2 Vector sangat tidak mirip.

Persamaan Cosine Similarity Cosine Similarity untuk N Dimensions.
A.B Yo" AiBi
cos(f) = ————— _ =1
O = T cos(0)

T n -9 \/ n)
Dimana
A.B = Dot Product Vector A dan Vector B

||A]] = Magnitude Vector A

|IB|| = Magnitude Vector B

Cosine Distance dan Cosine Similarity Part 3

Untuk memahami kenapa perhitungan Cosine Similarity kita akan simulasikan pada Vector space 2 Dimensions.

. S0 AiBi
VS ARy, BP

cos(0)

Jika kita memiliki 2 Vector, p dan q:

a=[3 3|
b=1[6, 2] : |
3X6+3x%x2
cos(f) = 1
V324 3% x V62 + 22

cos(0) = 0.894427190999916 g ! ? 3 3 ; ; 7

Sehingga Cosine Similarity dari a ke b = ~0.89

Cosine Distance dan Cosine Similarity Part 4

Contoh mengukur kemiripan Vector dengan beberapa

Vector lain menggunakan Cosine Similarity. 4

Katakanlah kita mempunyai 2 koordinat pada dataset yang kita miliki. 3 ‘ ar

b=[6, 2] » 2 ‘ » ‘ b
c=1[7,-4]

Kemudian kita mempunyai data koordinat baru,

Yaitu: E] 0 1 2 3 4 5 é 7 8
a=[3,3] »

Kita akan ukur seberapa dekat data-data yang ada di dataset dengan data
baru a menggunakan Cosine Similarity.

cos(B) adengan b cos(B) a dengan ¢ *
cos(6) t3><fi+3><‘2 ; cos(8) = ‘3><7+3><(—4) B | | c
V32432 x V62 + 22 VB3 x /T2 + (<)
cos(8) = 0.894427190999916 cos(f) = 0.2631174057921088)
Cosine Similarity Vector a ke b = ~0.89 dan Vector a ke ¢ = ~0.26. Sehingga bisa

disimpulkan, Vector a lebih mirip dengan b (nilai cos(8) a dengan b lebih besar) dibandingkan
dengan Vector a dengan c (nilai cos(8) a dengan c lebih kecil).

Cosine Distance dan Cosine Similarity Part 5

Pada persamaan Cosine Distance dibawah ini akan menghasilkan nilai 0 sampai 2, atau 0 sampai 1 (jika Vector
sudah di normalisasi. Baca bagian Unit Vector !). Cosine Distance adalah ekstensi dari Cosine Similarity untuk
menyatakan bahwa semakin kecil nilai 1-cos(8), semakin mirip 2 Vector tersebut.

Jika Nilai 1-cos(8) = 0, menandakan 2 Vector searah, mirip dari sisi arah (direction).
Jika Nilai 1-cos(8) = 1, (sudut 90°, Vector tegak lurus/perpendicular), menandakan 2 Vector tidak mirip.

Jika Nilai 1-cos(0) = 2 (1- (-1) = 2), (sudut 180°, Vector berlawanan arah), menandakan 2 Vector sangat tidak mirip.

Persamaan Cosine Distance Cosine Distance untuk N Dimensions.

B S AiBi
Vi Aty L, Bi?

A.B
AN 1Bl

Dcos =1 Dcos =1

Dimana
A.B = Dot Product Vector A dan Vector B
||A]] = Magnitude Vector A

|IB|| = Magnitude Vector B

Cosine Distance dan Cosine Similarity Part 6

Contoh mengukur kemiripan Vector dengan

beberapa Vector lain menggunakan Cosine Distance. i

Katakanlah kita mempunyai 2 koordinat pada dataset yang kita miliki. 3 ‘ a g

b=[6,2] S Eamaamaamaamanr!
c= [71 -4]

Kemudian kita mempunyai data koordinat baru,

Yaitu: E] 0 1 2 3 4 5 é 7 8
a=[3,3] »

Kita akan ukur seberapa dekat data-data yang ada di dataset dengan data
baru a menggunakan Cosine Distance.

Dcos a dengan b Dcos a dengan ¢ *
3x6+3x2 _, . 3xT4+3x(-4) o
D,.m:l—— Dcosfl E E = = -4 t 1
- VB X V2 +22 V3 + 32 x /T2 4 (—4)2 !
D.,. = 0.10557280900008403 D.,. = 0.7368825942078912)
Cosine Distance a ke b =~0.10 dan a ke ¢ =~0.73. Sehingga bisa disimpulkan, Vector a

lebih mirip dengan b (nilai Dcos a dengan b lebih kecil) dibandingkan dengan Vector a
dengan c (nilai Dcos a dengan c lebih besar).

Cosine Distance dan Cosine Similarity Part 7

Tabel perbandingan Cosine Similarity dan Cosine Distance

Cosine Similarity

Makna nilai Semakin besar semakin mirip
Tujuan Mengukur kemiripan
Kegunaan Analisa kemiripan “makna” Text

Cosine Distance

Semakin kecil semakin mirip

Mengukur perbedaan/jarak

Algoritma Clustering: KNN, K-Means,
Approximate Nearest Neighbors seperti
HNSW (Hierarchical Navigable Small World),
IVF (Inverted File Index).

Cosine Distance dan Cosine Similarity Part 8

Mengapa fungsi Trigonometry cos(6) muncul pada Cosine Similarity dan Dot Product ?

Pada pembahasan Dot Product pada bagian sebelumnya, persamaan di bawah ini sebenarnya memberitahu kita
seberapa jauh “bayangan” Vector B yang bekerja (“jatuh”) searah dengan Vector A

A.B = || A|l[| B cos(8)

Pembahasan Trigonometry pada bagian
sebelumnya, menyatakan bahwa:

cos(0) = Adjacent
" Hypotenuse

Adjacent = Hypotenuse x cos(0)

Dimana:

Hypotenuse = Magnitude dari Vector B, ||B|| acent= \\B\\

cos(0) = nilai cos sudut (angle) antara Vector A dan Vector B Ad)2

Sehingga proyeksi/Adjacent untuk komponen Vector B bisa Hasil proyeksi/Adjacent (panah (arrow) berwarna merah) bisa dianalogikan
dihitung dengan: sebagai hasil proyeksi (projection) atau bayangan Vector B terhadap
Adjacent = ||B||cos(0) Vector A.

Oleh karena itu, persamaan A.B = ||A|| || B cos(#)

secara logis mengalikan panjang(magnitude) Vector A dengan
komponen Vector B (hasil proyeksi/Adjacent/panah (arrow)
berwarna merah) yang sudah "diluruskan" ke arah Vector A.

Cosine Distance dan Cosine Similarity Part 9

Mengapa fungsi Trigonometry cos(6) muncul pada Cosine Similarity dan Dot Product ?

Pada pembahasan Cosine Similarity pada bagian sebelumnya, kemudian merujuk pada persamaan Trigonometry untuk mencari cos(8),
persamaan Cosine Similarity dibawah ini sebenarnya adalah bentuk perubahan posisi komponen dari persamaan Dot Product. Bahkan
operasi Dot Product-nya akan menghasilkan hasil yang sama jika Vector telah dinormalisasi (menjadi Unit Vector). Lebih detail pada bagian
“Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi”.

Pembahasan Trigonometry pada bagian sebelumnya, menyatakan bahwa:

Adjacent
c05(0) = ————
cos(f) Hypotenuse

Adjacent = Hypotenuse X cos()

Cosine Similarity Dot Product

A.B
cos(0) = TATTET A.B = ||A|| || B|| cos(#)

Dimana

A.B = Dot Product Vector A dan Vector B

||A]| = Magnitude Vector A

||B]| = Magnitude Vector B

|IA][||B]| = Total magnitude Vector A dan Vector B

cos(6) = nilai cos sudut (angle) antara Vector A dan Vector B

Cosine Distance dan Cosine Similarity Part 10

Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi

Untuk membuktikan pernyataan: Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi,
kita akan menghitung Cosine Similarity dan Dot Product (dengan setiap Vector-nya dinormalisasi/ menjadi Unit

Vector).

Menghitung Cosine Similarity Vector A
dan B:

A=1[6,2]

B =3, 3]

cos(8) A dengan B

cos() = iz AiBi
VL AR B
cos(6) 6x3+2x3

VB 22 x /32132
cos(ﬁ) = (0.894427190999916

Menghitung Dot Product Vector A dan B yang sudah dinormalisasi
menjadi Unit Vector:

A=16,2]

B =3, 3]

Dot Product A dengan B dan sudah dinormalisasi dalam Unit Vector

b (ot (o)) (o) ())
\/Z:;l‘AQ \/Z:;l B? \/Z:;l A2 \/Z’”:l B2 \/Z’":l A2 \/ZLJ B
6 3 2 3
X + X
VT2 T VL Vet VR
A.B = 0.894427190999916

AB

Cosine Distance dan Cosine Similarity Part 11

Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi

+ ‘s £ «
« ! 6
@ normalized vector v1
O . _((nx)(w 5
R ((n)’(ny))
Label = (0.70710678,0.70710678)
4
([07 n3‘x],[0, ng.y])
B
Label (0,0) (0.7071,0.7071) I

2
@ normalized vector v2

O . ([=){=) 2

Label (0.9486833,0.31622777) T h
([O, n4.x],[0, n4.y])
Label (0,0) (0.9487,0.3162) 2 - 0 1 2 3 4 ? 9 T T

dy=ngx-ngx+ngy-ng.y

0.894427191

0.894427191

Vector warna ,
adalah Vector A dan
Vector B yang sudah
dinormalisasi (dalam Unit
Vector)

Perhitungan pada bagian
sebelumnya, kita coba plot
pada graph. Hasil
perhitungan Cosine
Similarity sama dengan
hasil perhitungan Dot
Product dengan setiap
Vectornya sudah
dinormalisasi (dalam Unit
Vector).

Vector Embedding

Vector Embedding Part 1

Dalam konteks Machine Learning dan Artificial Intelligence, Vector Embedding adalah representasi numerik dari data non-numerik (seperti teks,
gambar, atau audio) ke dalam ruang Vector berdimensi tinggi (high-dimensional space). Proses ini bertujuan untuk memetakan informasi
semantic (makna) ke dalam koordinat Matematis. Dua data yang memiliki kemiripan makna akan ditempatkan pada posisi yang
berdekatan dalam ruang Vector tersebut. Vector Embedding tidak ditentukan secara manual oleh manusia, melainkan dihasilkan melalui
proses Feature Extraction oleh model Deep Learning.

o | | | Data Representasi Vector
\Q,_ [5, 2.5]
[6, 2]
e [1, 4]
[3, 5]

[3, 4]

Vector Embedding Part 2 | Evolusi Representasi Data (History & Development)
Era Computer Vision (AlexNet - 2012 | Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton)

Sejarah modern Vector Embedding dimulai secara masif pada tahun 2012 melalui paper ImageNet Classification with Deep Convolutional Neural
Networks atau yang lebih kita kenal sebagai AlexNet. Berikut hasil observasi yang dilakukan oleh para penulis Paper tersebut.

e Terobosan: Model ini membuktikan bahwa Convolutional Neural Networks (CNN) dapat mengekstraksi dan belajar fitur visual
secara otomatis.

° Hasil: Gambar mentah diubah menjadi feature vector (embedding) berdimensi 4096. Untuk pertama kalinya, gambar dapat
dibandingkan secara matematis melalui jarak antar Vector, bukan sekadar perbandingan pixel mentah.

Pada Section 6.1, dalam Paper tersebut, para penulis melakukan
eksperimen lain, selain eksperimen utama dari Paper ini, yaitu Image
Classification. Perhatikan statement:

“(Right) Five ILSVRC-2010 test images in the first column. The remaining
columns show the six training images that produce feature vectors in the
last hidden layer with the smallest Euclidean distance from the feature
vector for the test image.”

- Eksperimen Image Retrieval: Penulis menguji kemampuan
model dengan mengambil 5 gambar dari test set (kolom pertama)
dan mencari gambar dari training set yang memiliki jarak
Euclidean Distance terkecil pada Vector fitur 4096-dimensi.

- Keunggulan Ruang Vector (Embedding Space): Hasil

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model. menunjukkan bahwa: meskipun gambar-gambar tersebut memiliki

The correct label is written under each image, and the probability assigned to the correct label is also shown perbedaan pada level pixel, seperti pose, latar belakang, dan

with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The sudut pandang yang berbeda, model tetap mampu menemukan

remaining columns show the six training images that produce feature vectors in the last hidden layer with the biek tik rti qaiah . t
smallest Euclidean distance from the feature vector for the test image. E je l)yang secara semantik sama (seperti gajah, anjing, atau
apal).

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper. - Eksperimen ini membuktikan bahwa lapisan tersembunyi (hidden
pdf ImageNet Classification with Deep Convolutional Neural Networks | University of Toronto layer) terakhir model tidak sekadar melihat "warna" atau "pixe/l",
melainkan membentuk pemahaman konsep objek di dalam

ruang Vector.

mushroom
agaric

mushroom
jelly fungus

indi
howler monkey | fi

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Vector Embedding Part 3 | Evolusi Representasi Data (History & Development)

Era Natural Language Processing (Word2Vec - 2013 | Google)

Setelah gambar, dunia NLP mengalami revolusi melalui Word2Vec. Word2Vec memungkinkan kata direpresentasikan
menggunakan Vector (Word Embedding).

Kekurangan dari model Word Embedding:

e Tidak Context aware. 1 kata (word) direpresentasikan dengan 1 Vector, sehingga saat proses analisis dengan model ini,
model tidak melihat surrounding word.

e Representasi Vector selalu sama, sekalipun konteks berbeda. Misal kata Bank (tempat menyimpan uang) dengan Bank
(tepi sungai) akan memiliki representasi Vector yang sama. Contoh lain kata dalam Bahasa Indonesia adalah Bisa
(mampu) dengan Bisa (Racun pada Ular).

e Model tidak bisa mewakili 1 kalimat secara alami. Biasanya butuh proses agregasi, sebab setiap kata pada kalimat akan
memiliki Vector masing-masing.

Vector Embedding Part 4 | Evolusi Representasi Data (History & Development)

Era Transformers & Attention (Paper: Attention Is All You Need, model BERT & Sentence Transformers - 2017 | Google)

https://arxiv.org/abs/1706.03762 Paper ini memperkenalkan arsitektur Transformer yang menggantikan mekanisme sekuensial
(seperti RNN) dengan mekanisme Self-Attention. Hal ini berdampak signifikan pada kualitas Vector Embedding:

e Mekanisme Self-Attention: Tidak seperti model sebelumnya yang memproses kata satu per satu, Transformer
memungkinkan setiap elemen dalam input (kata atau patch gambar) untuk "memperhatikan" (attend fo) elemen lainnya
secara simultan.

e Contextualized Embeddings: Inilah perbedaan terbesarnya. Melalui Self-Attention, Vector yang dihasilkan bersifat dinamis
(sesuai konteks).

o Contoh: Kata "Bank" dalam kalimat "I want to save money in the Bank" dan "l was standing near the river Bank”,
kata “Bisa” (Bahasa Indonesia) dalam kalimat “Saya Bisa melakukannya” dan “Saya keracunan Bisa Ular” akan
menghasilkan koordinat Vector yang berbeda karena model memperhatikan kata-kata di sekitarnya.

e Sentence Embeddings: Seluruh kalimat atau paragraf kini dapat diringkas menjadi satu Vector tunggal yang
merepresentasikan seluruh ide pikiran.

https://arxiv.org/abs/1706.03762

Vector Embedding Part 5 | Evolusi Representasi Data (History & Development)

Era Modern (adaptasi Arsitektur Transformers untuk Computer Vision): Vision Transformers (ViT) & Multi-Modal (CLIP)

VIT adalah adaptasi langsung dari arsitektur Transformer (dari paper Attention Is All You Need) dengan judul paper An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale (https://arxiv.org/abs/2010.11929) untuk data gambar.

e Mekanisme "Patches": Berbeda dengan CNN(Convolutional Neural Networks) yang memproses gambar dengan sliding
window, ViT memecah gambar menjadi potongan-potongan kecil (patches) dan memperlakukannya seperti urutan kata
dalam sebuah kalimat.

e Global Context: Melalui Self-Attention, setiap bagian gambar dapat berinteraksi dengan bagian lainnya secara global. Hal
ini menghasilkan Embedding yang sangat baik dibandingkan CNN yang bersifat lokal.

Selain itu, perkembangan terkini telah mencapai tahap Multi-Modal Learning, di mana model seperti CLIP (Contrastive
Language-Image Pre-training) dari OpenAl mampu menyatukan dua dunia yang berbeda. CLIP memetakan teks dan gambar ke
dalam ruang Vector yang sama (Shared Vector Space). Hal ini memungkinkan sistem untuk mencari gambar menggunakan
deskripsi teks (dan sebaliknya) hanya dengan menghitung Cosine Similarity antara Vector teks dan Vector gambar.

https://arxiv.org/abs/2010.11929

Vector Embedding Part 6 | Dimana Vector Embedding diambil dari Model

Secara umum Deep Learning Model memiliki 2 peran,

- Memahami data (merepresentasikan data)
- Mengambil/Membuat keputusan (decision)

Untuk memahami secara visual dimana Vector Embedding diambil, kita akan kembali mereview kembali Arsitektur dari AlexNet yang sudah kita bahas pada
bagian sebelumnya. Dalam Paper tersebut, para penulis secara eksplisit menyebut: “Another way to probe the network’s visual knowledge is to consider
the feature activations induced by an image at the last, 4096-dimensional hidden layer”.

33’% £y o — Jika kita perhatikan pada visualisasi Arsitektur Network AlexNet, /ast
' BN LN /1 N ense hidden layer adalah FC7. Layer FC7 menghasilkan Vector berdimensi
192 192 i -
- - =] 4096. Ini adalah /ast hidden layer yang menyimpan informasi
a3
— Q N "pemahaman" fitur secara menyeluruh sebelum data tersebut masuk ke
33[;};,13':% M dense’| [dens?] lapisan klasifikasi (FC8). FC8 adalah Decision Layer yang berisi 1000
- 1000 neuron (sesuai jumlah label pada Datasets ImageNet
192 128 Max
Max T Max booling 707 0 https://www.image-net.org) yang bertugas untuk membuat keputusan,
pocting pooling l ' yaitu menebak label.
conv2 conv3 conva convs cco D .. Catatan: FC = Fully Connected
o @ 3
O L
Secara umum, Vector Embedding diambil
Ol @ © sebelum Output Decision Layer.
o @ ©

1000
96 256 384 384 256 4096 4096

https://www.image-net.org

Vector Embedding Part 7 | Melatih Language Model sederhana sebagai Vector Embedding Model

Sebelum menggunakan Model yang lebih powerful untuk menghasilkan Vector Embedding, untuk mendapatkan intuisi yang lebih baik dari mana Vector
Embedding dihasilkan, kita akan melatih Language Model sederhana untuk kita jadikan sebagai Vector Embedding Model.

Cara kerja dari Model yang akan kita buat menggunakan mekanisme Training: Konteks vs Target.

Mekanisme Konteks vs Target ini menggunakan BiGram. Secara teknis, kita sedang mengajari model: "Jika kata ‘penyanyi' muncul, kemungkinan besar kata
apa yang ada di dekatnya?". Output misalnya bisa: “piano”, “gitar”, “vokalis”.

° X (Input): One-Hot Encoding dari kata pusat.
° Y (Output): One-Hot Encoding dari kata tetangga.

Dimensi Vector Embedding dari model ini adalah 2. Artinya, kita memaksa model untuk merangkum seluruh makna kata ke dalam koordinat 2D (x, y).

Vector Embedding Part 8 | Melatih Language Model sederhana sebagai Vector Embedding Model

Dataset o import re

. . . cerita.txt
Dataset untuk melatih model berupa artikel kecil kurang o Slal Al e
dari 50 baris. gitar termasuk alat musik
band memainkan musik
dalam band biasanya ada pemain gitar
dalam band biasanya ada pemain drum
vocalis biasanya ada dalam band
vocalis adalah penyanyi
vocalis biasanya nyanyi sambil memaninkan alat musik
penyanyi biasanya ada juga di dalam band
penyanyi solo biasanya bermain piano
penyanyi biasanya nyanyi sambil memaninkan alat musik
vocalis biasanya bisa memainkan piano
piano gitar dan drum biasanya ada dalam band
vocalis juga kadang bermain gitar
gamer bermain game
game biasanya ada di komputer
di playstation bisa bermain game
laptop dia ada game bagus
laptop, playstation dan komputer bisa digunakan untuk bermain game
nasi adalah makanan pokok
nasi cocok dengan tempe
tempe terbuat dari kedelai
kedelai adalah tanaman
sayur adalah tanaman
bayam adalah salah satu jenis sayur

“Anda bisa menambahkannya, Notebook dari Demo
section ini akan disertakan di akhir section.”

def remove_special_characters(text):
pattern = r'[*a-zA-Z0-9\s]' # Keep only alphanumeric characters and spaces
return re.sub(pattern, '', text).strip()

Vector Embedding Part 9 | Melatih Language Model sederhana sebagai Vector Embedding Model

Membuat Dataset BiGram

) . o reate BiGram
Sesuai namanya, data BiGram terdiri dari 2 kata yang Create BiGra
berurutan atau berdekatan.

. © bigrams = []
Sebagai contoh, jika kita memiliki text:

for word_list in filtered_cerita_data:

Google adalah perusahaan teknologi dari Negara for i in range(len(word_list) - 1):
Amerika. for j in range(i+l, len(word_list)):

bigrams.append([word_list[i], word_list[j]])
Setelah melalui data cleansing (misal menghilangkan bigrams.append([word_list[j], word_list[i]])
stopwords). Data akan menjadi seperti berikut ini:

print(bigrams)

[‘google”, “perusahaan”, “teknologi”, “negara”, “amerika”) print(len(bigrams))
Kemudian proses BiGram akan menghasilkan data seperti e [['piano', 'alat'], ['alat', 'piano'l, ['piano', 'musik'],
berikut ini: 182

n o« ” o«

[[“google”, “perusahaan’], [“perusahaan”, “teknologi”],

R n o«

[“teknologi”, “negara”], [“negara”, “amerika”]]

Vector Embedding Part 10 | Melatih Language Model sederhana sebagai Vector Embedding Model

Membangun Vocabulary

Get unique words
Seperti Language Model pada umumnya, kita juga
membutuhkan daftar kosakata yang akan digunakan oleh
Model yang akan kita bangun. Vocabulary dalam model ini
berbentuk simple Python Dictionary untuk kebutuhan
lookup table.

vocabs = []

for bigram in bigrams:
vocabs.extend(bigram)

vocabs = list(set(vocabs))
vocabs.sort()
print(vocabs)
print(len(vocabs))

[*alat', 'bagus', 'band', 'bayam', 'bermain', 'cocok', 'drum',
31

Create dictionary of words
. © vocab_dicts = {}

counter = 0

for v in vocabs:
vocab_dicts[v] = counter
counter = counter + 1

print(vocab_dicts)

{'alat': @, 'bagus': 1, 'band': 2, 'bayam': 3, 'bermain': 4, '

Vector Embedding Part 11 | Melatih Language Model sederhana sebagai Vector Embedding Model

Merepresentasikan Vocabulary dalam bentuk One Hot
Encoding/ Sparse Vector One Hot Encoding

Saat proses training, Model yang kita bangun © import numpy as np
membutuhkan input data numerik. Sehingga Data training

harus kita ubah menjadi data numerik. Metode yang kita

pilih adalah metode One Hot Encoding/ Sparse Vector. for i in range(len(vocabs)):
Anda bisa membaca kembali apa itu Sparse Vector pada onehot_datalil [i] = 1
bagian sebelumnya.

onehot_data = np.zeros((len(vocabs), len(vocabs)))

onehot_data_dict = {}

c=20

for v in vocabs:
onehot_data_dict[v] = onehot_datalc]
c=c+1

print(onehot_data_dict)

- {'alat': array([1l., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'bagus': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]1), 'band': array([o.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'bayam': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]1), 'bermain': array([¢
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'cocok': array([0.,
., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]1), 'drum': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'game': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'gamer': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'gitar': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]1), 'jenis': array([0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]1), 'kedelai': array(I[(
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'komputer': array(|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.1), 'laptop': array([0.
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.1), 'makanan': array([¢
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'memainkan': arrayl
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), 'memaninkan': array
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]1), 'musik': array([@.,

Vector Embedding Part 12 | Melatih Language Model sederhana sebagai Vector Embedding Model

Mengimplementasikan Arsitektur Model menggunakan

Pytorch Train Model
Model yang kita bangun bisa disebut next word prediction (> ?’“port EOrC:
.« . . . impor orch.nn as nn

model. Model ini akan memprediksi kata berikutnya import torch.optim as optim
berdasarkan input. Jika melihat kembali Dataset BiGram from torch.autograd import Variable
yang kita buat sebelumnya, secara teknis kita sedang ‘ -

L. .) # Get cpu, gpu or mps device for training.
mengajari model: “Jika kata penyanyi muncul, device = ("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is

kemungkinan besar apa kata yang ada di dekatnya ?” .

Assuming X and Y are torch tensors

X = Variable(torch.tensor(x, dtype=torch.float32)).to(device)
Input dan Output size model ini sama, yaitu jumlah Y = Variable(torch.tensor(y, dtype=torch.float32)).to(device)
keseluruhan Vocabulary yang kita buat sebelumnya.

. . # Define the neural network

Untuk mempermudah penjelasan Vector Embedding lass Net (finsModuia):
dalam section materi ini dan menghilangkan step def _ init_ (self, input_size, output_size, embed_size):

Dimensionality Reduction, hidden layer kita buat menjadi super(Net, self).__init_ () ,
self.fcl = nn.Linear(input_size, embed_size)

2 Neuron (lihat: embed_size). Kita paksa langsung /ast self.fc2 _ nn.Linear(embed_size, output_size)
hidden layer merangkum seluruh makna data dalam ruang

2 Dimensi saja. def forward(self, x):

x = torch.relu(self.fcl(x))
x = torch.softmax(self.fc2(x), dim=1)
return x

def get_embedded_vec(self, x):
return torch.relu(self.fcl(x))

Set seed for reproducibility
torch.manual_seed(42)

Instantiate the model
embed_size = 2
model = Net(X.shape[l], Y.shape[ll, embed_size).to(device)

Vector Embedding Part 13 | Melatih Language Model sederhana sebagai Vector Embedding Model

Validasi Model dengan mencoba memprediksi next
word berdasarkan input word

————————— embedded vec ————————-
Menggunakan input kata: “band” , model memprediksi tensor([[4.1391, 0.0000]11)
outputnya dengan kata: “musik”.

tensor([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]11)

Tidak begitu buruk untuk Language Model kecil

dengan 2 Network layer. tensor([[2.9531e-03, 4.5178e-15, 2.3838e-18, 2.9758e-15, 7.0277e-05, 3.9599e-14,
1.2265e-16, 3.7772e-12, 3.8736e-16, 2.1167e-15, 1.0462e-15, 1.5366e-15,
8.0372e-16, 3.7963e-15, 1.0503e-13, 8.3421e-17, 5.7419e-12, 9.9697e-01,
5.6800e-20, 3.8787e-14, 2.3060e-15, 3.2904e-17, 7.1824e-18, 9.9821e-15,
3.6623e-13, 1.7991e-16, 1.1058e-25, 2.7029e-16, 2.6132e-14, 2.2136e-06,
1)

.6631e-1711
Predicted: "17"

/tmp/ipython-input-1682934348.py:15: UserWarning: Creating a tensor from a list of nu
x = torch.tensor([x[index_datal], dtype=torch.float32)

Vector Embedding Part 14 | Melatih Language Model sederhana sebagai Vector Embedding Model

Mengkonversi Model menjadi Embedding Model
) o) model = Net(X.shapel[l], Y.shapel[l], embed_size).to(device)

Mengkonversi Model menjadi Embedding Model dengan print (model)

cara mengambil /ast hidden layer dari model. Dengan model. load_state_dict(torch.load("model.pth"))

jumlah 2 Neuron pada last hidden layer, Vector Embedding

yang dihasilkan oleh model ini akan memiliki dimensi 2

Dimensi.

weights = model.fcl.weight.detach().cpu().numpy()

word_embeddings = {}
for v in vocabs:

word_embeddings[v] = [weights[@] [vocab_dicts[v]], weights[1] [vocab_dicts[v]]]
word_embeddings

FCi

bl
Q
N

Net (
(fcl): Linear(in_features=31, out_features=2, bias=True)
(fc2): Linear(in_features=2, out_features=31, bias=True)

)

O 0O

«

FC1 adalah last hidden layer sebelum decision layer, yaitu
FC2. Layer ini yang kita gunakan untuk menghasilkan
Vector Embedding.

Vector Embedding Part 15 | Melatih Language Model sederhana sebagai Vector Embedding Model

Normalisasi Vector dan melakukan Vector
Search dengan Cosine Similarity

Sebelum melakukan Vector Search, kita terlebih
dahulu menormalisasi seluruh Vector Embedding
yang merepresentasikan setiap kata yang ada di
Vocabulary kita. Jika kita ingat pada pembahasan
sebelumnya, Cosine Similarity hanya butuh arah
(direction), tidak membutuhkan besaran/panjang
(magnitude).

Pada pencarian dengan input kata: “penyanyi”
dan top_k=5, Vector Search berhasil
mendapatkan 5 kata dengan koordinat terdekat.

” o« "

Yaitu “vocalis”, “piano”, “alat”, “band” dan “nyanyi”.

Vector Normalization

© def normalize(v):
v = np.array(v, dtype=float)
return v / np.linalg.norm(v)

normalized_embeddings = {

w: normalize(vec)
for w, vec in word_embeddings.items()

normalized_embeddings

© def cosine_sim_norm(a, b):
return np.dot(a, b)

print(cosine_sim_norm(
normalized_embeddings["piano"],
normalized_embeddings["gitar"]
))

—0.03638797060264176

© def most_similar(word, embeddings, top_k=5):
target = embeddings [word]
scores = []

for w, vec in embeddings.items():
if w == word:
continue
sim = cosine_sim_norm(target, vec)
scores.append((w, sim))

scores.sort(key=lambda x: x[1], reverse=True)
return scores[:top_k]

similar_results = most_similar("penyanyi", normalized_embeddings)
for word, score in similar_results:
print(f“{word}: {score}")

vocalis: 0.9999753137323064
piano: 0.9999722660228834
alat: 0.9938282555467914
band: ©.911491556365883
nyanyi: 0.8737595036631776

Vector Embedding Part 16 | Melatih Language Model sederhana sebagai Vector Embedding Model

Memvisualisasikan seluruh Vocabulary dalam
ruang 2 Dimensi

Pada ruang 2 Dimensi, Vector Embedding yang
dihasilkan oleh Language Model kecil yang kita
buat berhasil menempatkan kata yang saling
berkaitan satu sama lain pada koordinat yang
berdekatan. Misalnya kedelai dan nasi, playstation
dan game.

1.00 +

0.75 1

0.50 A

0.25 A

0.00

—0.25 1

—0.50 A

—0.75 1

—1.00 -

sayur

kedelai
@aEmmmkan
nasi

fnkipinan
Gesanite
@havstation

@ome

@gnukik
Feippninkan

. yi
‘Iat

gand

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

Vector Embedding Part 17 | Melatih Language Model sederhana sebagai Vector Embedding Model

URL Notebook Melatih NLP Model sederhana sebagai Vector Embedding Model

https://colab.research.google.com/drive/10TIaXgx9rTm3t0SxAuijMJnEZYk0 NB5?usp=sharing

Anda bisa bereksperimen sendiri dengan Notebook ini, untuk mendapatkan intuisi yang lebih baik tentang darimana Vector Embedding
dihasilkan.

https://colab.research.google.com/drive/1oTlaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing

Vector Embedding Part 18 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Menghasilkan Sentence Embedding menggunakan “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”

Model sentence-transformers/paraphrase-multilingual-mpnet-base-v2 adalah salah satu Embedding Model yang dikembangkan oleh
tim Sentence Transformers (SBERT) yang diperuntukan menghasilkan Vector Embedding untuk kebutuhan Sentence Similarity, Text
Similarity dan Semantic Text Search.

Model ini dilatih khusus untuk memahami bahwa dua kalimat dengan kata-kata berbeda bisa memiliki makna yang sama (paraphrase).
Model ini menghasilkan Vector Embedding dengan ukuran 768 Dimensi.

© from sentence_transformers import (

SentenceTransformer,
util
)
sentence_1 = "saya sedang tidak enak badan"

model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2"')
embedding_1 = model.encode(sentence_1)
print(embedding_1[:101)

[0.01320906 -0.00484423 -0.01073376 ©0.03327633 0.08287398 0.03472598
-0.07229888 0.06802528 0.1447741 0.07492868]

Menampilkan 10 value pertama dari Vector Embedding.

Vector Embedding Part 19 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Sentence Similarity Vector Embedding yang dihasilkan “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”

Perhatikan bahwa hasil terbaik adalah "saya sedang tidak enak
badan" dan "saya merasa kesehatan saya sedang terganggu”.
Keduanya tidak memiliki kata "menurun" atau "fisik", tapi secara
koordinat Vector dan menggunajan Metric Cosine Similarity,
mereka adalah tetangga terdekat (Nearest Neighbors).
“sentence-transformers/paraphrase-multilingual-mpnet-base-
v2” sangat baik dalam memahami “jika” dua kalimat memiliki
makna (paraphrase) yang sama.

o from sentence_transformers import SentenceTransformer, util

import torch
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')

in memory database
documents = [
"saya sedang tidak enak badan",
"hari ini cuaca sangat cerah sekali",
"laptop saya sedang rusak dan perlu diperbaiki",
"saya merasa kesehatan saya sedang terganggu"

1

indexing
doc_embeddings = model.encode(documents)

input query
query = "saya sedang sakit"
query_embedding = model.encode(query)

vector search with cosine similarity
cosine_scores = util.cos_sim(query_embedding, doc_embeddings) [@]

search the top k
top_results = torch.topk(cosine_scores, k=2)

print(f"User Query: '{query}'\n")
print("Top 2 Search Results in Vector Database:")
print("-" x 40)

for score, idx in zip(top_results.values, top_results.indices):
print(f"Score: {score:.4f}")
print(f“Document: {documents[idx]}")
print("-" % 40)

+ User Query: 'saya sedang sakit'

Top 2 Search Results in Vector Database:

Score: 0.7781
Document: saya sedang tidak enak badan

Score: 0.6258
Document: saya merasa kesehatan saya sedang terganggu

Vector Embedding Part 20 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Menghasilkan Image Embedding menggunakan “facebook/dinov2-small”

Model facebook/dinov2-small adalah salah satu Embedding Model berdasarkan Arsitektur ViT (Vision Transformers) yang dikembangkan oleh tim Meta
dan diperuntukan untuk menghasilkan Vector Embedding dari gambar (image). Kemudian hasil Vector Embedding Image bisa kita gunakan untuk task
lebih lanjut. Misalnya image to image search atau bahkan melatih zero shot image classification.

Sesuai namanya “facebook/dinov2-small”, model ini menghasilkan Vector Embedding dengan ukuran 384 Dimensi. Untuk level produksi, anda
mungkin perlu menggunakan varian Model DINO yang lebih besar.

© inmport os
import numpy as np
import requests
from PIL import Image

import torch
from transformers import AutoImageProcessor, AutoModel

device = "cuda" if torch.cuda.is_available() else "cpu"

EMBEDDING_MODEL = "facebook/dinov2-small"

processor = AutoImageProcessor.from_pretrained(EMBEDDING_MODEL)
model = AutoModel.from_pretrained(EMBEDDING_MODEL).to(device)
model.eval()

def get_embedding(img_url):
image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
inputs = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :]
embedding = torch.nn.functional.normalize(embedding, dim=-1) # normalize optional
return embedding.squeeze().cpu().numpy()

img_url_1 = "https://images—na.ssl-images—amazon.com/images/I/41u48iJce7L.jpg"

print(get_embedding(img_url_1)[:10])

[-0.10202865 -0.01010288 -0.02814776 0.05421898 0.00209667 -0.04328454
0.04019937 0.03087261 —0.0392565 -0.12512551]

Menampilkan 10 value pertama dari Vector Embedding.

Vector Embedding Part 21 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Image Similarity Vector Embedding yang dihasilkan “facebook/dinov2-small”

vector search

. import matplotlib.pyplot as plt
© import os
import numpy as np #1.

Database
import requests image_library = [img_url_1, img_url_2, img_url_3, img_url_4, img_url_5]
from PIL import Image
indexing
import torch print("Indexing image...")
from transformers import AutoImageProcessor, AutoModel library_embeddings = np.array([get_embedding(url) for url in image_libraryl])
print(f"Searching image...")

device = "cuda" if torch.cuda.is_available() else "cpu" query_vec = get_embedding(input_image)

EMBEDDING_MODEL = "facebook/dinov2-small" # search with Cosine Similarity
processor = AutoImageProcessor.from_pretrained(EMBEDDING_MODEL) scores = np.dot(library_embeddings, query_vec)
model = AutoModel. from_pretrained(EMBEDDING_MODEL).to(device)
model.eval() # get the top 3 results
top_k = 3
top_indices = np.argsort(scores)[::-1] [:top_k]

def get_embedding(img_url):
image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")

fig = plt.figure(figsize=(15, 5))
inputs = processor(images=image, return_tensors="pt").to(device)

with torch.no_grad(): # show Input Image
outputs = model(x*xinputs) ax_input = fig.add_subplot(1, top_k + 1, 1)
embedding = outputs.last_hidden_state[:, 0, :] img_input = Image.open(requests.get(input_image, stream=True).raw)
embedding = torch.nn.functional.normalize(embedding, dim=-1) # normalize optional ax_input. imshow(img_input)

ax_input.set_title("INPUT IMAGE\n(Query)", color='blue', fontweight='bold')

return embedding.squeeze().cpu().numpy() ax_input.axis('off')

img_url_1 = "https://images-na.ssl-images-amazon.com/images/I/41u48iJce7L.jpg" # show Top-K Results
img_url_2 = "https://images—na.ssl-images—amazon.com/images/I/41wqBSDd2AL. jpg" for i, idx in enumerate(top_indices):
img_url_3 = "https://images-na.ssl-images—-amazon.com/images/I/41tueGfkp6L.jpg" ax_res = fig.add_subplot(1, top_k + 1, i + 2)
img_res = Image.open(requests.get(image_library[idx], stream=True).raw)
img_url_4 = "https://unsplash.com/photos/XemnZn264uA/download? force=truesw=640" ax_res. imshow(img_res)
img_url_5 = "https://unsplash.com/photos/1HgixV1agUw/download?force=true&w=640" ax_res.set_title(f"Rank {i+1}\nScore: {scores[idx]:.4f}")
img_url_6 = "https://unsplash.com/photos/EGzkhZyFRX4/download?force=true&w=640" ax_res.axis('off")
. . plt.tight_layout()
input_image = "https://unsplash.com/photos/EEddCahUvY8/download?force=true&w=640" plt.show()

Simulasi image to image search menggunakan model “facebook/dinov2-small”. Secara umum step-step yang dilakukan adalah data indexing (ada proses
Image Embedding), simpan data ke Vector Store (dalam simulasi ini in memory pada Python List), Image Vector Search (ada proses Image Embedding sebelum
Query).

Mengukur Image Similarity Vector Embedding yang dihasilkan “facebook/dinov2-small”

- Indexing image...

Searching image...
INPUT IMAGE Rank 1
(Query) Score: 0.6893

Rank 2 Rank 3
Score: 0.4691 Score: 0.4544

« Indexing image...

Searching image. ..

INPUT IMAGE Rank 1
(Query) Score: 0.6927

Rank 3
Rank 2 Score: 0.4952
Score: 0.5259

Vector Embedding Part 22 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Hasil Simulasi image to image search
menggunakan model
“facebook/dinov2-small” menunjukan
model ini bisa sangat baik dalam
membandingkan Semantic Visual pada satu
gambar dengan gambar lainnya, meskipun
secara struktur pixel, latar belakang, warna,
bahkan dengan bentuk yang berbeda.

Vector Embedding Part 23 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Text to Image Similarity atau Image to Image Similarity dan menghasilkan Vector Embedding menggunakan Multimodal Model
“sentence-transformers/clip-ViT-B-32-multilingual-v1”

“sentence-transformers/clip-ViT-B-32-multilingual-v1” adalah implementasi dari CLIP (Contrastive Language—Image Pre-training) milik OpenAi yang
dikembangkan oleh tim Sentence Transformers (SBERT). Model ini dilatih untuk memahami hubungan antara teks dan gambar dalam satu ruang Vector
yang sama. Memungkin kita mencari kemiripan antara text (yang mendeskripsikan sebuah visual) dengan gambar.

Misalnya anda memasukan query: “Minum kopi sepertinya enak”, kemudian model menghasilkan Vector Embedding representasi dari query tersebut. Selanjutnya
Vector Embedding tersebut digunakan sebagai input untuk Vector Search. Menggunakan metrics “misalnya” Cosine Similarity, hasil mungkin akan berupa gambar

orang sedang membuat kopi, gambar kopi di kebun kopi, gambar orang minum kopi di cafe.

Vector Embedding Part 24 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Text to Image Similarity atau Image to Image Similarity dan menghasilkan Vector Embedding menggunakan Multimodal Model
“sentence-transformers/clip-ViT-B-32-multilingual-v1”

vector search
import numpy as np
import matplotlib.pyplot as plt

° from sentence_transformers import SentenceTransformer, util
from PIL import Image, ImageFile
import requests

import torch # Indexing Image
print("Indexing images into Shared Vector Space...")

image_library = [img_url_1, img_url_2, img_url_3, img_url_4, img_url.5, img_url_6]

img_model = SentenceTransformer('clip-ViT-B-32") images_pil = [load_image(url) for url in image_library]
library_embeddings = img_model.encode(images_pil)

text_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1l') # Query
print(f'Searching images for query: '{input_text_query}'...")
query_vec = text_model.encode(input_text_query)

4. Search with Cosine Similarity
scores = np.dot(library_embeddings, query_vec)

def load_image(url_or_path):
if url_or_path.startswith("http://") or url_or_path.startswith("https://"):
Ranking
return Image.open(requests.get(url_or_path, stream=True).raw) top.k = 3
else: top_indices = np.argsort(scores) [::-1] [:top_kI]

return Image.open(url_or_path) fig = plt.figure(figsize=(15, 5))

. # shi
img_url_1 = "https://images—na.ssl-images—-amazon.com/images/I/41u48iJce7L.jpg" e ot o i Sl BT e T

img_url_2 = "https://images—na.ssl-images—amazon.com/images/I/41wqBSDd2AL. jpg" ax_text.text(0.5, 0.5, f"QUERY:\n\n'{input_text_query}'",

. _ 3 : s n . fontsize=12, ha='center', va='center', fontweight='bold', color='blue')
img_url_3 = "https://images—-na.ssl-images—amazon.com/images/I/41tueGfkp6L.jpg" ax_text.set_title("INPUT TEXT", fontweight='bold")

ax_text.axis('off')

img_url_4 = "https://unsplash.com/photos/X@mnZn264uA/download?force=true&w=640"

show Top-K Image Results

img_url_5 = "https://unsplash.com/photos/1HgixVlagUw/download?force=true&w=640" for i, idx in enumerate(top_indices):)
img_url_6 = "https://unsplash.com/photos/EGzkhZyFRX4/download?force=true&w=640" i;;ile,:S::iza;:g::f[{ﬂz;](1 top_k + 1, 1+2)

ax_res.imshow(img_res)
ax_res.set_title(f"Rank {i+1}\nScore: {scores[idx]:.4f}")
ax_res.axis('off")

input_text_query = "naik atv motor sepertinya enak"

plt.tight_layout()
plt.show()

Simulasi Multimodal search menggunakan model “sentence-transformers/clip-ViT-B-32-multilingual-v1. Secara umum step-step yang dilakukan adalah
data indexing (ada proses Image Embedding), simpan data ke Vector Store (dalam simulasi ini in memory pada Python List), Image/Text Vector Search (ada
proses Image Embedding sebelum Query).

Vector Embedding Part 25 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Text to Image Similarity atau Image to Image Similarity dan menghasilkan Vector Embedding menggunakan Multimodal Model
“sentence-transformers/clip-ViT-B-32-multilingual-v1”

- Indexing images into Shared Vector Space...
Searching images for query: 'ngomong ngomong aku suka boneka'...

INPUT TEXT

QUERY:

g aku suka b

Rank 2 Rank 3
Score: 25.9577

Rank 1

Score: 26.8791 Score: 25.1140

Hasil Simulasi Multimodal search
menggunakan model
“sentence-transformers/clip-ViT-B-32-m
ultilingual-v1” menunjukan model ini bisa
sangat baik dalam membandingkan text yang
mendeskripsikan sebuah visual dengan
visual pada gambar.

-« Indexing images into Shared Vector Space...

Searching images for query: 'naik atv motor sepertinya enak'...

INPUT TEXT

QUERY:

‘naik atv motor sepertinya enak’

Rank 3
Score: 21.2765

Rank 2
Score: 21.4953

Rank 1
Score: 23.2265

Vector Embedding Part 26 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

URL Notebook Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

https:/icolab.research.google.com/drive/1uQixkB5wJFzNmj2elg5IFxC7kBEE7Sma?usp=sharing

Anda bisa bereksperimen sendiri dengan Notebook ini, untuk mendapatkan intuisi bagaimana cara menghasilkan Vector Embedding dari
pre-trained model.

https://colab.research.google.com/drive/1uQIxkB5wJFzNmj2eIg5IFxC7kBEE7Sma?usp=sharing

Vector Database

Vector Database Part 1

Bayangkan kita memiliki jutaan foto dan dokumen, namun semuanya tidak memiliki nama file. Database tradisional akan sulit pada
beberapa kasus ini. Di sinilah Vector Database berperan. la tidak menyimpan data berdasarkan 'label' atau 'nama’, melainkan
berdasarkan 'posisi' atau 'makna’ dalam ruang multidimensi. Dengan teknologi ini, kita tidak lagi bertanya kepada komputer
‘Cari dokumen yang mengandung kata X', melainkan 'Cari semua data yang memiliki nuansa, feels atau bentuk yang mirip dengan
input saya'. Inilah fondasi utama yang memungkinkan Al memiliki memory yang terstruktur dan sangat cepat.

Beberapa alasan kita membutuhkan Vector Database, dibandingkan kita menyimpan Vector Embedding pada in memory di level
code, misalnya List atau Dictionary.

° Penyimpanan Efektif: Dioptimalkan khusus untuk menyimpan Dense Vectors hasil dari Embedding Model CLIP, DINO,
MPNet, Open Ai Embedding atau Embedding Model Lain.

e Indexing Cepat: Menggunakan algoritma ANN (Approximate Nearest Neighbors) seperti HNSW atau IVFFlat untuk
proses pencarian. Jika kita menggunakan metode tradisional atau bahkan melakukan sort manual, cara ini sangat tidak
scalable. Sebab, metode tradisional atau sort manual melakukan perbandingan satu persatu ke setiap row Vector
Embedding yang ada.

e Kebutuhan Memory Jangka Panjang: Jika anda pernah mendengar atau bahkan membangun langsung aplikasi yang
bertumpu pada Retrieval-Augmented Generation (RAG) seperti Chatbot yang memanfaatkan LLM (Large Language
Model), anda membutuhkan memory jangka panjang untuk menyimpan konteks yang akan anda lookup berdasarkan
prompt/query dari pengguna.

Vector Database Part 2

Ada banyak Database Vendor yang menyediakan/mengimplementasikan Vector Store untuk kebutuhan Vector Search. Kita akan
mencoba menggunakan 3 Vector Store yang secara umum mewakili beberapa kebutuhan dan kondisi infrastruktur dalam suatu
organisasi. Yaitu Postgre(ext: pgvector), Elasticsearch, dan Qdrant.

PostgreSQL (pgvector) untuk solusi All-in-One

e Karakteristik: Ekstensi dari RDBMS paling populer di dunia.

e Mengapa menggunakan ini? Cocok untuk aplikasi yang sebelumnya sudah menggunakan PostgreSQL, sebab kita tidak
membutuhkan infrastruktur baru khusus untuk Vector Store (instalasi terpisah).

e Kelebihan: Mendukung transaksi ACID, sangat stabil, dan sekarang sudah mendukung algoritma Approximate Nearest
Neighbors (ANN) HNSW dan IVFFlat yang digunakan langsung sebagai mekanisme Indexing.

https://www.postaresal.org/

https://github.com/pgvector/pgvector

https://www.postgresql.org/
https://github.com/pgvector/pgvector

Vector Database Part 3

PostgreSQL (pgvector) untuk solusi All-in-One

Memasang ekstensi pgvector:

Sebelum melakukan kompilasi, sistem memerlukan paket pengembangan (development headers) yang sesuai dengan versi PostgreSQL yang digunakan. Dalam hal ini, kita menggunakan PostgreSQL versi
14.

sudo apt-get update && sudo apt-get install -y postgresql-server-dev-14 build-essential git
Berpindah ke direktori sementara:

cd /tmp

Melakukan kloning repositori pgvector dengan branch spesifik v0.8.1:

git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git

Masuk ke direktori repositori:

cd pgvector

Membersihkan residu kompilasi sebelumnya (jika ada) :

make clean

Tahap Kompilasi source code. Penggunaan OPTFLAGS="" memastikan kompatibilitas instruksi CPU yang lebih luas:
make OPTFLAGS=""
Menginstal binary ekstensi ke direktori library PostgreSQL :

make install

Vector Database Part 4

PostgreSQL (pgvector) untuk solusi All-in-One

Mengaktifkan ekstensi Vector

Perintah SQL untuk mengaktifkan fitur Vector:

CREATE EXTENSION IF NOT EXISTS vector;

Verifikasi instalasi dan versi ekstensi:

SELECT extname, extversion FROM pg_extension WHERE extname = 'vector';

Membuat tabel contoh: document_embeddings dengan kolom embedding kita set dimensinya: 768, sesuai ukuran output Embedding model yang akan kita gunakan,
yaitu “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”.
CREATE TABLE document_embeddings (

id serial PRIMARY KEY,

title TEXT,

content TEXT,

source TEXT,

embedding vector(768), -- Assuming you're using a 768-dim embedding

last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP

Membuat Index menggunakan dengan HNSW:

CREATE INDEX ON document_embeddings USING hnsw (embedding vector_cosine_ops);

Vector Database Part 5

PostgreSQL (pgvector) untuk solusi All-in-One

Data ingestion dari dokumen seperti PDF, Docx, dan PPTx file

insert_embedding(pg, content, source, model):
embedding = del.eﬁcode(content).tolist()

last_updated = datetime.now()

sql = "
INSERT INTO document_embeddings (content, source, embedding, last_updated)
VALUES (%s, %s, %5)

pg.execute_and_commit(sql, (content, source, embedding, last_updated))

if __name__ == '__main__':
model = SentenceTransformer('./model/paraphrase-multilingual-mpnet-base-v2')

g = postgres.PostgresSync(conn_str="'postgresql://user:12345678@127.0.0.1:5432/mydb")
try:

pg.connect()
except Exception as e:

print(e)

curr_dir = os.getcwd()

files = []
for f in os.listdir(os.path.join(curr_dir, 'docs')):
if os.path.isfile(os.path.join(curr_dir, f'docs/{f}')):
files.append(os.path.join(curr_dir, f'docs/{f}'))

r file_path in files:
chunks = doc_util.process_document(file_path)
for chunk in chunks:
insert_embedding(pg, chunk['content'l, chunk['source'], model)

pg.disconnect()

Vector Database Part 6

PostgreSQL (pgvector) untuk solusi All-in-One

Melakukan Vector Search menggunakan metrics Cosine Similarity

TP VT -Chs) Pgvector mendukung distance function:

def search_doc():
f query_similar_documents(pg, query, k=2):

<->- L2 distance

<#> - (negative) inner product

<=> - cosine distance

<+> - L1 distance

<~> - Hamming distance (binary vectors)
<%> - Jaccard distance (binary vectors)

query_embedding = embed_text(query).tolist()
query_embedding_str = f"{query_embedding}"

sql = """

SELECT id, content, source, 1 - (embedding < ss) AS score,
last_updated

FROM document_embeddings

ORDER BY score DESC

results = pg.execute_query(sql, (query_embedding_str, k))

return results Pgvector by default tidak menyediakan fungsi Cosine Similarity, untuk
request.args.get('q") menggunakan fungsi Cosine Similarity, cukup gunakan trik:

‘search query cannot be empty'}), 400

Cosine Similarity = 1 - (Cosine Distance)

if k is None or k == '':

‘content', 'source', 'score', 'last_updated'

rows = query_similar_documents(pg, q, k=int(k))

results = []
for row in rows:
results.append(dict(zip(columns, row)))

return jsonify({
‘data': results,
‘message': 'search result'

Vector Database Part 7

PostgreSQL (pgvector) untuk solusi All-in-One

Melakukan Vector Search menggunakan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen dengan query tertentu.

GET v ontp: 001/search tempegk=3
=Docs Params e Authorization Headers (7) Body Scripts Tests Settings
Query Params

Key Value

I
@ «

makanan tempe

Body Cookies Headers (5) TestResults <O
{} JsoN D Preview [Visualize v
v data [3]
content id
pemegang hak paten). [1] [2] [3] [4] Tak hanya tempe mendoan yang saat ini terkenal, 47
0 kaum vegetarian membuat steak tempe untuk pengganti daging. Pembuatan Tempe
berbungkus daun pisang yang dijual di pasar tradisional Indonesia Tempe
kedelai sehingga terbentuk tekstur yang memadat. Degradasi komponen-komponen 42
1 kedelai pada fermentasi membuat tempe memiliki rasa dan aroma khas. Berbeda dengan
tahu , tempe terasa agak masam . Tempe banyak dikonsumsi masyarakat di
dari tahapan perebusan, pengupasan, perendaman dan 1, pencucian, 49
2 inokulasi dengan ragi, pembungkusan, dan fermentasi. [8] Pada tahap awal pembuatan
tempe, biji kedelai direbus. Tahap perebusan ini berfungsi sebagai proses hidrasi ,
message search result

Description

last_updated
Fri, 02 Jan 2026
13:19:02 GMT

Fri, 02 Jan 2!
13:19:02 GMT

Fri, 02 Jan 2026
13:19:03 GMT

2000K 280 ms

score

0.6901219557012247

0.6886348785929263

0.6109188754645098

Cookies

e Bulk Edit

177KB - @ oo

source

tempe_wikipedia.pdf
tempe_wikipedia.pdf

tempe_wikipedia.pdf

GET v http://localhost:9001/search-doc?q=film dengan tema Artificial Intelligence&k=3
SDocs Params e Authorization Headers (7) Body Scripts Tests Settings
Query Params

Key Value

a

film dengan tema Artificial Intelligence

k 3
Body Cookies Headers (5) TestResults O
{} JSON D Preview [Visualize
v data [3]
content id
bersama dengan James Wan , yang juga bertindak sebagai produser bersama 15
o dengan Jason Blum . Film ini berkisah mengenai sebuah robot boneka dengan
kecerdasan buatan bemnama M3GAN yang mengembangkan kesadaran diri dan
memusuhi siapa pun
terdorong oleh ketakutan mereka akan kemungkinan bahwa kecerdasan buatan 2
, dapat manusia. 5] 6 pendukung OpenAl
telah berkomitmen untuk mendanai proyek ini senilai $1 miliar , mereka adalah Reid
Hoffman
merilis "Universe", sebuah platform perangkat lunak untuk mengukur dan melath 7

2 sebuah kecerdasan umum dari kecerdasan buatan di seluruh pasokan permainan

dunia, peramban dan aplikasi |

message search result

ainnya. [10] [11] [12] [13] Pada Februari, 2018, Musk

Cookies

Description e Bulk Edit
2000K - 625ms - 1.78KB - @ coo
&
last_updated score source
Fri, 02 Jan 2026 0.6313127053953451 megan_movie_wikipedia.pdf

13:19:01 GMT

Fri, 02 Jan 2026
13:18:59 GMT

Fri, 02 Jan 2026
13:19:00 GMT

0.5750661474131858

0.5097179305595665

openai_wikipedia.pdf

openai_wikipedia.pdf

Vector Database Part 8

Qdrant untuk kebutuhan Native Vector Store

Karakteristik: Database yang dirancang khusus dari awal untuk mengelola data Vector (Vector-Native).

e Implementasi: Pilihan utama untuk kebutuhan dengan prioritas tinggi pada performa dan efisiensi. Dibangun menggunakan
bahasa pemrograman Rust, Qdrant menawarkan kecepatan pemrosesan tinggi dan kemudahan integrasi melalui API.

e Kelebihan: Memiliki kemampuan advanced filtering) yang sangat presisi dan cepat, serta manajemen memori yang optimal
untuk Dataset skala besar.

https://gdrant.tech/

https://qdrant.tech/

Vector Database Part 9

Qdrant untuk kebutuhan Native Vector Store
Data ingestion dari dokumen seperti PDF, Docx, dan PPTx file

from logger import logger as log def insert_embedding(qdrant_db: qdrantdb.QDrantDb, chunks):
from qdrant_client import models, QdrantClient qdrant_db.client.upsert(
from sentence_transformers import (collection_name="document_embeddings",

points=[
SentenceTransformer qdrantdb.models.PointStruct(

id=uuid.uuid4().hex,
vector=qdrant_db.dense_model.encode(doc['content']).tolist(),
class QDrantDb: payload={'content': doc['content'], 'source': doc['source'], 'last_updated': datetime.now()}
def __init_ (self, conn_str: str, dense_model: SentenceTransformer) -> None: "
self.client = None
self.database_url = conn_str)
self.dense_model = dense_model

for doc in chunks

if __name__ == '__main__"':

- model = SentenceTransformer('./model/paraphrase-multilingual-mpnet-base-v2')
connect(self):

self.client = QdrantClient(url=self.database_url) qdrant_db = qdrantdb.QDrantDb(conn_str='http://localhost:6333', dense_model=model)
try:
f create_collections(self):
if self.client is None:
raise Exception('client not initialized yet')

qdrant_db. connect()

qdrant_db.create_collections()
if not self.client.collection_exists("document_embeddings"): except Exception as e:
self.client.create_collection(print(‘qdrant connect errors’)
collection_name="document_embeddings", EEE)
vectors_config=models.VectorParams (
size=self.dense_model.get_sentence_embedding_dimension(),

distance=models.Distance.COSINE, files = [1
for f in os.listdir(os.path.join(curr_dir, 'docs')):
if os.path.isfile(os.path.join(curr_dir, f‘docs/{ e
) files.append(os.path.join(curr_dir, f'docs/{f}'))

curr_dir = os.getcwd()

log.info('create collections document_embeddings succeed')

for file_path in files:
def disconnect(self): chunks = doc_util.process_document(file_path)
if self.client is not None: insert_embedding(qdrant_db=qdrant_db, chunks=chunks)

self.client.close()

qdrant_db.disconnect()

Insight penting: saat membuat collection di Qdrant, kita sekaligus menentukan Embedding Dimension dan Distance function yang akan kita gunakan. Ukuran Embedding
Dimension = 768, sesuai ukuran output Embedding model yang akan kita gunakan, yaitu “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”

Vector Database Part 10

Qdrant untuk kebutuhan Native Vector Store

Melakukan Vector Search menggunakan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen dengan query tertentu.

GET v http//localhost:9001/search-doc?q=film dengan tema Artificial Intelligence&k=3
Docs Params ® Authorization Headers (7) Body Scripts Tests Settings Cookies
Query Params
Key Value Description e Bulk Edit
q film dengan tema Artificial Intelligence
k 3
Body Cookies Headers (5) TestResults D 2000K - 652ms - 1.8KB - @ | oo
{} JSON [Preview [Visualize ~ @
v data [3]
payload score
fr— bersama dengan James Wan , yang juga bertindak sebagai produser bersama dengan Jason Blum . Film ini berkisah mengenai 06313128
sebuah robot boneka dengan kecerdasan buatan bernama M3GAN yang mengembangkan kesadaran diri dan memusuhi siapa pun
O lastupdated 2026-01-02T13:19:13.043292
source megan_movie_wikipedia.pdf
Po— terdorong oleh ketakutan mereka akan kemungkinan bahwa kecerdasan buatan dapat mengancam keberadaan manusia. [5] [6] 05750662
Sekelompok pendukung OpenAl telah berkomitmen untuk mendanai proyek ini senilai $1 miliar , mereka adalah Reid Hoffman ,
1 lastupdated 2026-01-02T13:19:12.239077
source openai_wikipedia.pdf
p— merilis "Universe', sebuah platform perangkat lunak untuk mengukur dan melatih sebuah kecerdasan umum dari kecerdasan buatan 0.50971794
[10] [11] [12] [13] Pada Februari, 2018, Musk

di seluruh pasokan permainan dunia, peramban dan aplikasi lainnya

GET v http: 001 h q=berita tentang op 3
= Docs Params @ Authorization Headers (7) Body Scripts Tests Settings
Query Params
Value Description

2 ey
2
8 «

Body Cookies

{} JsoN

v data [3]

berita tentang openai

3

Headers (5) TestResults 4D 200 0K - 624ms
D Preview [Visualize v
payload
S dan penelitiannya terbuka untuk umum. (7] [8] Pada 27 April 2016, OpenAl merilis sebuah beta publik "OpenAl Gym", platformnya
untuk penelitian pembelajaran penguatan. [9] Pada 5 Desember 2016, OpenAl merilis "Universe", sebuah platform

last_updated 2026-01-02713:19:12.539281

source openai_wikipedia.pdf
contont dan akurat dengan resolusi 4x lebih besar . Pada 10 Januari 2024, OpenAl memperbarui kebijakannya . Dalam kebijakan terbaru ini,
perusahaan sepenuhnya menghapus bahasa sebelumnya yang melarang * aktivitas yang memiliki risiko tinggi

last_updated 2026-01-02T13:19:12.809203

source openai_wikipedia.pdf

OpenAl adalah laboratorium penelitan kecerdasan buatan yang terdiri atas perusahaan waralaba OpenAl LP dan perusahaan induk
nirlabanya, OpenAl Inc. Para pendirinya (khususnya Elon Musk dan Sam Altman) terdorong oleh ketakutan mereka akan

content

Cookies

«s Bulk Edit

1.8KB

@ 00

score

0.6073136
0.5891812

0.5737567

Vector Database Part 11

Elasticsearch untuk solusi Hybrid Search

Karakteristik: Standar industri untuk full text search yang kini mendukung Dense Vector Search.
e Implementasi: Sangat direkomendasikan untuk skenario Hybrid Search. Memungkinkan integrasi antara pencarian kata
kunci tradisional (keyword-based search) dengan semantic search berbasis makna (vector-based search) secara simultan.
e Kelebihan: Memiliki skalabilitas tinggi untuk volume data masif, serta dilengkapi dengan fitur analitik dan pemantauan data
yang sangat komprehensif. Selain itu mirip dengan kasus PostgreSQL. Ketika kita sudah memiliki infrastruktur untuk
Elasticsearch, kita tidak perlu lagi membutuhkan infrastruktur baru yang dikhususkan untuk pemasangan Vector Store

terpisah.

https://www.elastic.co/docs/solutions/search/vector

https://www.elastic.co/search-labs/blog/vector-search-set-up-elasticsearch

https://www.elastic.co/docs/solutions/search/vector
https://www.elastic.co/search-labs/blog/vector-search-set-up-elasticsearch

Vector Database Part 12

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Field Mapping untuk field imageVector
Field Mapping untuk field imageVector

"imageVector": {

"type": "dense_vector",

“dims": 512,

"index": true,

"similarity": "cosine",

"index_options": {
"type": "int8_hnsw",
"ef_construction": 128,
"m": 24

}s

Tipe Data (dense_vector): Field ini dikonfigurasi khusus untuk
menyimpan high-dimensional embeddings yang dihasilkan oleh model
Al

Dimensi (dims: 512): Konfigurasi ini disamakan dengan dimensi output
dari model CLIP-ViT-B-32, memastikan integritas data pada saat
proses indexing.

Metrics (cosine): Menggunakan Cosine Similarity sebagai Vector
metrics. Disesuaikan dengan model CLIP, karena orientasi Vector lebih
menentukan makna semantic dibandingkan besaran/panjang
(magnitude).

Untuk kebutuhan Approximate Nearest Neighbors, Kita menggunakan
Scalar Quantization (int8). Teknik ini mengonversi Vector dari format
float32 ke int8, yang secara drastis bisa mengurangi konsumsi Memori
(RAM).

Parameter Indexing (HNSW) https://www.elastic.co/search-labs/blog/hnsw-graph

m =24.
ef_construction = 128

https://www.elastic.co/search-labs/blog/hnsw-graph

Vector Database Part 13

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Data Ingestion dari file gambar

ingest(): except:

print('download image error: jump')
continue

model = SentenceTransformer('clip-ViT-B-32")

esclient = Elasticsearch(_
hosts="'http://127.0.0.1:9200", data = {
"changeme), ‘productName': productName.strip() if isinstance(productName, str) else '',
request_timeout=30, ‘aboutProduct': aboutProduct.strip() if isinstance(aboutProduct, str) else '’

P ‘sellingPrice': sellingPrice.strip() if isinstance(sellingPrice, str) else ''
retry_on_timeout=True

‘productSpecification’: productSpecification if isinstance(productSpecification, str) else ''
'categories': categories,

'image': image,
print(esclient.info()) 'imageVector': imageVector,

‘color': color if isinstance(color, str) else '‘,
df = pd.read_csv('../amazon_products.csv')

f = df.reset_index()| productUrl': productUrl

index_name = 'products’

bulk_insert(): yield {

for index, row in df.iterrows(): ‘_index': index_name,
productName = row['Product Name'] '_id': uuid.uuid4(),
category = row['Category'] g
sellingPrice = row['Selling Price']
aboutProduct = row['About Product']
productSpecification = row['Product Specification']
image = row['Image']
color = row['Color']
productUrl = row['Product Url']

_source': data
helpers.bulk(esclient, bulk_insert())

def main():|
print(row('Image'].split('|")[0]) ingest()

image = image.split('|')[@] if len(image) > @ else '’ # df = ¢

categories = [c.strip() for c in category.split('|')] if isinstance(category, str) d len(category) > @ else []

if __name__ == '__main__':
imageVector = [] main()
if image != '':
try:
img_resp = requests.get(image, stream=True)
img_emb = model.encode(Image.open(img_resp.raw), batch_size=128, convert_to_tensor=True, show_progress_bar=True)
imageVector = img_emb.tolist()

Vector Database Part 14

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen dengan query gambar tertentu

) t1 1
@router.post('/search/v2"')
async def index(file: UploadFile):
if not file:
return {'success': False, 'message': 'file cannot be empty'}

contents = await file.read()

img_emb = model.encode(Image.open(io.BytesIO(contents)), batch_size=128, convert_to_tensor=True, show_progress_bar=True)

search_payload = {

"_sourc False,

"fields ["productName" , “image"l,

"knn": {

: "imageVector",

‘query_vector": img_emb.tolist(),
g s,
"“num_candidates": 100

response = esclient.search(
index='products’,
body=search_payload

)

return {'success': True, 'message': 'search result', ‘data': response}
except Exception as e:

log.error(e)

return {'success': False, 'message': 'search error'}
finally:

await file.close()

Vector Database Part 15

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen menggunakan query dengan gambar tertentu

& Image Search & Image Search
Upload an mage toind sar products Upload an mage t id simiar procucts
Selectmage

Menggunakan metrics Cosine Similarity,

sentence-transformers/clip-ViT-B-32
sangat baik dalam memahami
= vour Quenyimage = Your Querymage kesamaan visual dari dua gambar atau

lebih dengan cara membandingkan
Vector Embedding dari gambar query
dengan gambar yang ada di Index
Elasticsearch.

Similar Products (5 results)

Similar Products (5 resuits)

Red
RecfBlaciqWhite

Bandai Double Zero Action Figure Model Kit (1144 Scale) . Astray
Blue Frame

Dynacraft Duzy Customs Kids Bike, 12+
16-16-18 nch Whoels, i for Boys
and i

Bandal Hobby Sdes #11 Ground
Gundam 08th S Team

Vector Database Part 16

Honorable Mentions: Solusi Vector Store Lainnya
Selain tiga platform utama yang telah dibahas, terdapat beberapa solusi lain yang memiliki peran signifikan dalam industri:

1. Pinecone https://www.pinecone.io/

° Karakteristik: Vector Database berbasis cloud-native yang sepenuhnya dikelola (fully managed).
° Keunggulan: Menawarkan kemudahan operasional karena pengguna tidak perlu mengelola infrastruktur (serverless). Sangat populer di kalangan
Developer karena integrasinya yang cepat dengan ekosistem LLM seperti OpenAl dan LangChain.

2. Milvus https://milvus.io/

° Karakteristik: open-source, skala Enterprise.
° Keunggulan: Menawarkan Vector Database performa tinggi dan scalable.

3. Chroma https://www.trychroma.com/

° Karakteristik: open-source dan dirancang khusus untuk memudahkan pembuatan aplikasi berbasis Al.
. Keunggulan: Menawarkan kemudahan. Fokus pada developer experience (DX) dengan kemudahan instalasi (bisa berjalan secara in-memory atau
on-premise) dan sangat efisien untuk fase prototyping hingga produksi skala menengah.

https://www.pinecone.io/
https://milvus.io/
https://www.trychroma.com/

Useful Links

[Desmos] Vector Projection Dot Product: https://www.desmos.com/calculator/cd8w4ic6rt

[Desmos] Dot Product https://www.desmos.com/calculator/617aaa4053

[Desmos] Cosine Similarity https://www.desmos.com/calculator/678bd69c20

[Desmos] Euclidean Distance https://www.desmos.com/calculator/bce9c211b0

[Desmos] Simulate Euclidean Distance htips://www.desmos.com/calculator/2gpnvagzjh2

[Desmos] Trigonometry https://www.desmos.com/calculator/wgjxkrmeud

[Desmos] Cross Product https://www.desmos.com/3d/961c13b698

[Desmos] Vector Addition https://www.desmos.com/calculator/3a550e6b78

[Desmos] Vector Multiplication with scalar https://www.desmos.com/calculator/745e2fd4c6

[Desmos] 3D Vector https://www.desmos.com/3d/029e5691bc

[Notebook Google Colab] Language Model for Embedding Model from scratch
https://colab.research.google.com/drive/10TIaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing
[Notebook Google Colab] Using pre-trained Embedding Model
https:/icolab.research.qgoogle.com/drive/1uQIixkB5wJFzNmj2elg5IFxC7kBEE7Sma?usp=sharing
[Github] Image to Image search with Elasticsearch Vector Store and sentence-transformers/clip-ViT-B-32
https://github.com/musobarlab/reactjs-elasticsearch-auto-complete-example/tree/master/imageembed

https://www.desmos.com/calculator/cd8w4ic6rt
https://www.desmos.com/calculator/617aaa4053
https://www.desmos.com/calculator/678bd69c20
https://www.desmos.com/calculator/bce9c211b0
https://www.desmos.com/calculator/2qpnvqzjh2
https://www.desmos.com/calculator/wgjxkrmeud
https://www.desmos.com/3d/961c13b698
https://www.desmos.com/calculator/3a550e6b78
https://www.desmos.com/calculator/745e2fd4c6
https://www.desmos.com/3d/029e5691bc
https://colab.research.google.com/drive/1oTlaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing
https://colab.research.google.com/drive/1uQIxkB5wJFzNmj2eIg5IFxC7kBEE7Sma?usp=sharing
https://github.com/musobarlab/reactjs-elasticsearch-auto-complete-example/tree/master/imageembed

Tentang Penulis

Nama: Wuriyanto

Email; wurivanto007@agmail.com

Website: https://wurivan.to

mailto:wuriyanto007@gmail.com
https://wuriyan.to

