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Apa itu Vector

Dari sudut pandang Matematika (Math, Linear Algebra) dan Fisika (Physics), definisi Vector adalah objek yang memiliki besar (magnitude) dan arah 
(direction).

Definisi sederhana: Vector adalah objek yang merepresentasikan suatu entitas menggunakan lebih dari satu nilai. Mengapa lebih dari satu nilai? 
Sebab Entitas di dunia nyata bersifat Multidimensional (tidak hanya memiliki satu sifat saja).

Contoh: 

Manusia memiliki: tinggi badan, berat, umur | contoh format dalam Vector [180, 78, 26]

Warna (format RGB) biasanya 3 atau 4 dimensi : Red, Green, Blue, dan Alpha (untuk mengatur opacity) | contoh format dalam Vector [138, 26, 18, 0.5]

Vector memungkinkan:

● setiap dimensi menyimpan informasi berbeda

● kombinasi dimensi membentuk identitas entitas

Secara Matematis: v=(x1,x2,…,xn) Magnitude

Direction

A

B



Teorema Pythagoras (Pythagorean Theorem)

Teorema Pythagoras menjelaskan hubungan antara panjang sisi pada segitiga siku-siku (right angled triangle).

a

b
c

Contoh:



Trigonometry

Trigonometry adalah cabang Matematika 
yang mempelajari hubungan sisi dan sudut 
segitiga menggunakan rasio seperti sine 
(sin), cosine (cos), tangent (tan) dan 
fungsi inverse-nya, seperti Arcsine, 
Arccosine dan Arctangent. 

Trigonometry sangat penting bagi banyak 
industri. Sebut saja penerbangan, kelautan, 
otomasi mesin. Dan tentu saja sangat 
penting pada bidang Ilmu Komputer, seperti 
pada pengolahan citra digital, Computer 
vision, AI, Machine Learning, Game engine.

Kita tidak akan membahas detail tentang 
Trigonometri, hanya akan kita bahas sedikit 
beberapa persamaan yang akan kita 
gunakan sesuai tema materi ini.

theta θ

sin θ = a/c

cos θ = b/c

tan θ = a/b

Kita akan coba buktikan beberapa persamaan diatas. 
Pada gambar disamping diketahui sudut kemiringan 
segitiga tersebut θ = 36°, nilai hypotenuse atau c = 
50 dan nilai yang ingin kita ketahui adalah opposite 
atau a. Sehingga kita bisa menggunakan sin(θ) = 
a/c.

sin(θ) = a/c

sin(36°) = a/50
a = sin(36°) . 50

sin(36°) = 0.58

a = 0.58 x 50

a = 29

36°

50
?

36°

50
29



Trigonometry (inverse function)

theta θ

Sama halnya, misal ketika kita ingin mengetahui 
berapa sudut θ (theta), kita bisa memanfaatkan 
fungsi inverse trigonometri. Pada gambar disamping 
diketahui nilai hypotenuse atau c = 50, opposite 
atau a = 29 dan nilai yang ingin kita ketahui 
adalah sudut θ (theta). Kita masih menggunakan 
persamaan sin θ = a/c.

sin(θ) = a/c

sin(θ) = 29/50

29/50 = 0.58

sin(θ) = 0.58

θ = arcsine(0.58)

θ = 36°

?

50
29

36°

50
29

sin θ = a/c

function inverse function

sin θ = a/c θ = arcsine(a/c)

cos θ = b/c θ = arccosine(b/c)

tan θ = a/b θ = arctangent(a/b)



Scalar vs Vector

Dari sudut pandang Matematika (Math) dan Fisika (Physics), Scalar adalah objek yang hanya memiliki besaran 
(magnitude) saja. Berbeda dengan Vector, yang memiliki besaran (magnitude) dan arah (direction).

Scalar Vector

Jumlah Nilai Satu Banyak Nilai

Arah Tidak punya arah Punya arah

Contoh Suhu (30°) Akselerasi (5 km/h) ke arah 
timur



Representasi Vector

Secara fundamental Vector bisa direpresentasikan melalui sudut pandang Geometri (Geometry) dan Aljabar (Algebra).

Pada sudut pandang Geometry, Vector dianggap sebagai sebuah panah(arrow) yang ada pada ruang 2D, 3D dan ND.

Pada sudut pandang Aljabar (Algebra), 
Vector direpresentasikan dengan daftar 
angka yang berurut (ordered list of number).

V = (x, y)

V = (x, y, z)

V = (x, y, z, ….., N)

V = [5, 4]

V = [5, 4, 3]

V = [0.4, 0.66, 0.7, 1, …… 0.32]



Besaran/Panjang (Magnitude) Vector pada ruang 2 Dimensions

Untuk menghitung besaran/panjang (Magnitude) dari sebuah Vector, kita perlu mencari akar kuadrat dari penjumlahan dari setiap komponen Vector yang 
sudah di kuadratkan.

Pada ruang 2 Dimensi seperti disamping, Vector memiliki 2 komponen, yaitu x dan y. Atau pada 
pembahasan Representasi Vector, bisa kita tuliskan dengan:

x = 5

y = 4

V = [5, 4]

Jika kita perhatikan, Vector dan komponen-komponennya membentuk Segitiga siku-siku. Sehingga pada 
dasarnya kita bisa menghitung besar/panjang (Magnitude) Vector dengan formula Teorema Pythagoras 
(Pythagorean Theorem).

Sehingga Vector:

V = [5,4]

Memiliki besaran/panjang (Magnitude) = ~6.4



Besaran/Panjang (Magnitude) Vector pada ruang 3 Dimensions

Untuk menghitung besaran/panjang (Magnitude) dari sebuah Vector pada ruang 3D kita tetap bisa menggunakan Pythagorean Theorem.

Pada ruang 3 Dimensi seperti disamping, Vector memiliki 3 komponen, yaitu x, y dan z. Atau pada pembahasan 
Representasi Vector, bisa kita tuliskan dengan:

x = 5

y = 4

Z = 3

V = [5, 4, 3]

Jika kita perhatikan, Vector dan komponen-komponennya membentuk Segitiga siku-siku. Sehingga pada dasarnya kita 
bisa menghitung besar/panjang (Magnitude) Vector dengan formula Teorema Pythagoras (Pythagorean Theorem).

Sehingga Vector:

V = [5,4,3]

Memiliki besaran/panjang (Magnitude) = 
~7



Besaran/Panjang (Magnitude) Vector pada ruang N Dimensions

Untuk menghitung besaran/panjang (Magnitude) dari sebuah Vector pada ruang ND kita tetap bisa menggunakan Pythagorean Theorem.

V = [x1, x2, x3, …… xn]

Bentuk General:



Unit Vector dan Vector Normalization



Unit Vector Part 1

Unit Vector adalah Vector yang memiliki besaran/panjang (magnitude) = 1.

Untuk mendapatkan Unit Vector, lakukan pembagian setiap elemen Vector-nya 
dengan magnitude-nya. Proses ini disebut juga dengan Vector Normalization.

Vector source:

v = [v1, v2, v3, … vn]

dimana:
Unit Vector

Vector Source

Vector Magnitude

Bagi setiap elemen pada Vector 
source dengan magnitude-nya:



Unit Vector Part 2

Contoh Mendapatkan Unit Vector

Vector source:

v = [3, 4]



Unit Vector Part 3

Contoh Mendapatkan Unit Vector

Vector source:

v = [3, 4]

Pada gambar dibawah, Vector Source (kiri), dan Unit Vector-nya (Kanan) 
arah (direction) tidak berubah, meskipun Vector sudah di normalisasi ke 
dalam Unit Vector.



Unit Vector Part 4

Makna intutif Unit Vector

- Unit Vector hanya merepresentasikan arah (direction)
- Fokus pada arah (direction) bukan besar/panjang (magnitude)
- Besarnya sudah dinormalisasi (dibagi dengan magnitude-nya)



Unit Vector Part 5

Mengapa Unit Vector penting?

● Mengisolasi arah (direction), panjang dihilangkan dan arah tetap (arah lebih penting).
● Perbandingan adil, dalam artian: Vector lebih besar bukan berarti lebih penting(bobot lebih tinggi).
● Unit Vector memungkinkan perbandingan makna tanpa dipengaruhi oleh besarnya nilai.

Contoh kasus NLP (Natural Language Processing).

A =  “Saya suka Kopi” 

B = “Saya suka Kopi, tapi Kopi Arabika

Setelah melalui proses Embedding, misalnya menggunakan model modern seperti Sentence Transformers atau OpenAi Embedding akan menghasilkan representasi Vector 
dari dua kalimat diatas.

A = [0.21, 0.30, 0.12, 0.40, ...]

B = [0.42, 0.58, 0.25, 0.80, ...]

Observasi:

● Kalimat A dan B memiliki dimensi vector yang sama(Sentence Transformers: 384 / 768, Open Ai Embedding: 1536 / 3072). Namun, magnitude vector bisa berbeda.
● Jika dibandingkan langsung: Dot Product besar, B terlihat lebih penting. Padahal secara topik sama, yaitu tentang “Kopi”.
● Perbedaan ini dipengaruhi oleh:

○ spesifikasi makna
○ intensitas representasi semantik. Pada kalimat B kata “Kopi” banyak dipasangkan dengan kata penting lain, misalnya “Arabika”. Sehingga banyak value Embedding lebih 

besar di dimensi tertentu.

Unit vector memastikan perbandingan dilakukan pada makna, bukan pada kekuatan aktivasi embedding.



Sparse Vector dan Dense Vector



Sparse Vector dan Dense Vector Part 1

Sparse Vector

Sparse Vector adalah Vector yang sebagian besar elemennya bernilai nol. Hanya sedikit dimensi yang memiliki nilai tidak nol.

● Karakteristik: Memiliki dimensi yang sangat besar (bisa ribuan hingga jutaan), namun sangat sedikit data aktif di dalamnya.
● Contoh Representasi: Bag-of-Words (BoW) atau TF-IDF.
● Cara Kerja: Jika kita memiliki kamus berisi 100.000 kata unik, dan satu kalimat hanya berisi 5 kata, maka Vector untuk kalimat 

tersebut akan memiliki 99.995 elemen bernilai nol dan hanya 5 elemen yang memiliki nilai.

Kelebihan & Kekurangan Sparse Vector

● Kelebihan: Sangat mudah diinterpretasikan (setiap dimensi mewakili kata tertentu secara eksplisit).
● Kekurangan: Membutuhkan ruang penyimpanan yang besar jika tidak dikompresi, dan tidak bisa menangkap hubungan makna 

(sinonim) antar kata.



Sparse Vector dan Dense Vector Part 2

Contoh Sparse Vector (TF-IDF/One-Hot)

Misalkan kita memiliki "Kosakata" (Vocabulary) yang terdiri dari 5 kata: ["apel", "buku", "ceri", "durian", "es"]

Bayangkan kita ingin merepresentasikan kalimat: "Apel dan Ceri".

Karena kata "dan" tidak ada dalam kamus kita, maka Vector-nya hanya akan melihat kata yang tersedia. Vector ini akan menandai 1 
untuk kata yang muncul dan 0 untuk yang tidak.

Vector-nya:

[1, 0, 1, 0, 0]

● Indeks 0 (apel): 1 (Muncul)
● Indeks 1 (buku): 0 (Tidak muncul)
● Indeks 2 (ceri): 1 (Muncul)
● Indeks 3 (durian): 0 (Tidak muncul)
● Indeks 4 (es): 0 (Tidak muncul)

Dalam data yang nyata (misal jutaan kata), deretan angka 0 ini akan sangat panjang, itulah sebabnya disebut Sparse (jarang).



Sparse Vector dan Dense Vector Part 3

Dense Vector

Dense Vector adalah Vector yang sebagian besar atau seluruh elemennya memiliki nilai bukan nol. Biasanya nilainya berupa angka 
desimal (floating point).

● Karakteristik: Memiliki dimensi yang jauh lebih kecil dan tetap (misalnya 128, 256, atau 768 dimensi), namun setiap dimensi 
mengandung informasi "padat".

● Contoh Representasi: Word Embeddings (Word2Vec, GloVe) atau Neural Embeddings (BERT, OpenAI Embeddings).
● Cara Kerja: Alih-alih memetakan kata ke indeks kamus, dense vector memetakan data ke dalam ruang Vector kontinu di mana 

posisi Vector tersebut ditentukan oleh konteks dan makna.

Kelebihan & Kekurangan Dense Vector

● Kelebihan: Mampu menangkap hubungan semantik. Misalnya, dalam ruang dense vector, kata "Raja" dan "Ratu" akan berada di 
posisi yang berdekatan.

● Kekurangan: Sulit diinterpretasikan secara langsung oleh manusia (kita tidak tahu apa arti spesifik dari dimensi ke-45 dalam 
sebuah embedding).



Sparse Vector dan Dense Vector Part 4

Contoh Dense Vector

Dalam Dense Vector, kata tidak lagi diwakili oleh posisi indeks di kamus, melainkan oleh sekumpulan angka desimal yang mewakili 
"makna" atau fitur tertentu dalam ruang multidimensi.

Misalnya, kata "Apel" dalam model AI seperti Sentence Transformers dan OpenAi Embedding mungkin direpresentasikan seperti ini 
(biasanya panjangnya 384, 768, atau lebih):

Vector-nya:

[0.12, -0.59, 0.88, 0.01, -0.34, ...]

● Setiap angka di atas tidak mewakili kata spesifik, melainkan fitur abstrak (seperti tingkat "kemanisan", "kemerahan", atau 
"kategori buah").

● Semua posisi terisi oleh angka (tidak ada nol yang dominan), itulah sebabnya disebut Dense (padat).



Operasi Vector | Penjumlahan Vector (Vector Addition) Part 1

Menjumlahkan 2 buah Vector cukup mudah. 
Dengan catatan 2 Vector tersebut mempunyai 
dimensi yang sama. Seperti gambar di samping, 
Vector 𝑎 ditambahkan dengan Vector 𝑏 akan 
menghasilkan Vector 𝑐. Menjumlahkan satu 
Vector dengan Vector lainnya akan merubah 
magnitude dan direction dari Vector tersebut.



Operasi Vector | Penjumlahan Vector (Vector Addition) Part 2

Contoh:

a = [3, 4] 

b = [2, − 1]

Vector 𝑐 berwarna orange adalah hasil penjumlahan Vector 𝑎 
dan vector 𝑏. 

𝑐. 𝑥 = 𝑎. 𝑥 + 𝑏. 𝑥 

𝑐. 𝑦 = 𝑎. 𝑦 + 𝑏. 𝑦 

𝑐. 𝑥 = 3 + 2 = 5 

𝑐. 𝑦 = 4 + (− 1) = 3

Sehingga menghasilkan Vector baru, 

yaitu vector 

𝑐 = (5, 3).



Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 1

Perkalian Vector dengan scalar biasanya bertujuan untuk memperbesar atau memperkecil magnitude dan membalik 
(flipping) suatu Vector

Contoh mengalikan Vector dengan positif scalar 2: 

𝑎 = [3, 4] 

𝑠𝑐𝑎𝑙𝑎𝑟 = 2



Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 2

Mengalikan Vector 𝑎 dengan scalar 2 cukup mudah. Kalikan setiap elemennya dengan scalar 2. 

b.𝑥 = 3 * 2 

𝑏.𝑦 = 4 * 2

Sehingga menghasilkan Vector baru, yaitu vector 𝑏.

Vector 𝑏 = (6, 8). 



Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 3

Perkalian Vector dengan negative scalar. Mengalikan Vector dengan negative scalar −1 akan membalik direction 
sebuah Vector. 

Contoh mengalikan Vector dengan negative scalar -1: 

𝑎 = [3, 4] 

𝑠𝑐𝑎𝑙𝑎𝑟 = -1



Operasi Vector | Perkalian Vector (Vector Multiplication) dengan Scalar Part 4

Mengalikan Vector 𝑎 dengan negative scalar -1 cukup mudah. Kalikan setiap elemennya dengan scalar -1. 

b.𝑥 = 3 * (-1) 

𝑏.𝑦 = 4 * (-1)

Sehingga menghasilkan Vector baru, yaitu Vector 𝑏.

Vector 𝑏 = (-3, -4). 



Dot Product



Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 1

Perkalian Vector dengan Vector (Dot Product) menghasilkan sebuah scalar, sehingga disebut juga scalar product. Dot 
Product digunakan untuk mengukur kemiripan dua Vector. Untuk menghitung Dot Product, ada dua cara yang bisa 
dilakukan.

Cara pertama kita bisa mengalikan 
magnitude dua Vector tersebut dengan nilai 
cos(θ), dimana θ adalah sudut antara dua 
Vector.

Cara kedua kita bisa menjumlahkan product 
dari setiap elemennya

Bentuk umum untuk N 
Dimensions Vector. 

A = [a1, a2, a3, …, an]

B = [b1, b2, b3, …, bn]



Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 2

Contoh Dot Product:

A = [3, 3]

B = [4, 1]

A.B = 3 * 4 + 3 * 1

A.B = 15

Dot Product dari Vector A dan Vector B = 15



Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 3

Properti dari Dot Product

Dot Product bernilai 0 ketika sudut 
antara 2 Vector = 90°



Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 4

Properti dari Dot Product

Dot Product bernilai lebih dari > 0 
(positive) ketika sudut antara 2 
Vector < (kurang dari) 90°



Operasi Vector | Perkalian Vector dengan Vector (Dot Product) Part 5

Properti dari Dot Product

Dot Product bernilai kurang dari < 
0 (negative) ketika sudut antara 2 
Vector > (lebih dari) 90°



Cross Product



Operasi Vector | Perkalian Vector Silang (Cross Product) Part 1

Perkalian Vector silang menghasilkan Vector baru, tidak seperti Dot Product, yang menghasilkan sebuah scalar. 
Operasi Cross Product hanya bisa dilakukan pada sistem koordinat 3 Dimensi, sehingga hampir tidak pernah 
dimanfaatkan dalam dunia Machine Learning dan AI. Cross Product biasanya banyak digunakan pada Game Engine 
dan Robotic.

Cara pertama kita bisa mengalikan 
magnitude dua Vector tersebut dengan nilai 
sin(θ), dimana θ adalah sudut antara dua 
Vector.

Cara kedua kita bisa mengalikan silang 
setiap elemen pada dua Vector, kemudian 
melakukan operasi pengurangan dari setiap 
hasil perkalian silang tersebut.



Operasi Vector | Perkalian Vector Silang (Cross Product) Part 2

Contoh Cross Product:

A = [1, 2, 3]

B = [4, 5, 6]

A x B =  [(2 * 6) − (3 * 5), (3 * 4) − (1 * 6), (1 * 5) − (2 * 4)] 

A x B = [12 − 15, 12 − 6, 5 − 8] 

Cross Product dari Vector A dan Vector B menghasilkan Vector 
baru

= [− 3, 6, − 3]



Vector Metrics dan Vector Similarity



Vector Similarity

Vector Similarity adalah proses mengukur seberapa mirip dua koordinat data yang direpresentasikan menggunakan 
Vector dalam ruang multidimensi. Untuk mengukur seberapa mirip dua Vector kita menggunakan apa yang disebut 
sebagai Vector Metrics. Vector Metrics yang paling umum digunakan adalah Euclidean Distance(L2 Distance), 
Cosine Similarity, Cosine Distance, dan Dot Product/Inner Product (sudah kita bahas pada section sebelumnya).



Euclidean Distance (L2 Distance) Part 1

Euclidean Distance adalah Vector Metrics based on Teorema Pythagoras (Pythagorean Theorem). Mengukur 
kesamaan 2 Vector dengan Euclidean Distance itu seperti mengukur jalur terpendek dan terlurus dari 2 buah titik.

Jika merujuk kembali ke persamaan Teorema Pythagoras, persamaan 
Euclidean Distance tidak jauh berbeda. Persamaan ini hanya bentuk 
ekstensi dari persamaan Teorema Pythagoras untuk N Dimensions.

a

b
c

Euclidean Distance untuk N Dimensions.Persamaan Teorema Pythagoras (Pythagorean Theorem)

Dimana p dan q adalah 2 Koordinat Vector



Euclidean Distance (L2 Distance) Part 2

Untuk memahami kenapa p (Koordinat Vector 1) dikurangi terlebih dahulu dengan q (Koordinat Vector 2) sebelum melakukan 
perhitungan lebih lanjut pada persamaan Euclidean Distance, kita akan simulasikan pada Vector space 2 Dimensions.

Jika kita memiliki 2 Vector, p dan q:

p = [6, 4]

q = [5, 1]

Kita akan melakukan operasi pengurangan pada Vector p dengan q

R = [(p1 - q1), (p2 - q2)]

R = [(6 - 5), (4 - 1)]

R = [1, 3]

Hasil R (garis merah) adalah hasil ploting dari koordinat R,  x = 1, y = 3.



Euclidean Distance (L2 Distance) Part 3

Koordinat R jika kita gambarkan penuh akan menjadi segitiga siku-siku (right angled triangle), pada gambar sebelah 
kanan.



Euclidean Distance (L2 Distance) Part 4

Koordinat R jika kita gambarkan penuh dan kita tempatkan pada posisi koordinat q dan p sebagai origin, maka akan mensimulasikan 
dengan lebih jelas lagi garis mana sebenarnya yang akan kita ukur untuk Vector Metrics Euclidean Distance. Kemudian garis 
berwarna biru itulah yang akan kita tetapkan sebagai Euclidean Distance dari Vector p dan Vector q.

Menggunakan contoh sebelumnya, jika kita memiliki 2 
Vector, p dan q:

p = [6, 4]

q = [5, 1]

Sehingga distance dari p ke q = ~3.16



Euclidean Distance (L2 Distance) Part 5

Contoh mengukur kemiripan Vector dengan beberapa 
Vector lain menggunakan Euclidean Distance.

Katakanlah kita mempunyai 2 koordinat pada dataset yang kita miliki. 

b = [12, 11] 

c = [10, 0. 5]

Kemudian kita mempunyai data koordinat baru, 

Yaitu:

a = [7, 3]

Kita akan ukur seberapa dekat data-data yang ada di dataset dengan data 
baru a menggunakan Euclidean Distance.

Jarak Vector a ke b = 9.43 dan Vector a ke c = 3.90.  Sehingga bisa disimpulkan, 
jarak 𝑎 ke 𝑐 lebih dekat dari jarak 𝑎 ke 𝑏, seperti yang terlihat pada gambar diatas.



Cosine Distance dan Cosine Similarity Part 1

Cosine Distance dan Cosine Similarity adalah Vector Metrics yang mengukur kesamaan 2 Vector berdasarkan sudut 
(angle) function Cos (Cosine) antara 2 Vector. Berbeda dengan Euclidean Distance atau Dot Product yang 
bergantung pada besaran/panjang (magnitude) untuk menyatakan 2 Vector memiliki kemiripan. Cosine Distance dan 
Cosine Similarity menggunakan sudut (angle) untuk menyatakan 2 Vector memiliki kemiripan. Sehingga pada Cosine 
Distance dan Cosine Similarity, arah (direction) lebih penting dari pada besaran/panjang(magnitude).



Cosine Distance dan Cosine Similarity Part 2

Pada persamaan Cosine Similarity dibawah ini akan menghasilkan nilai -1 sampai 1. Cosine Similarity menyatakan 
bahwa semakin besar nilai cos(θ), semakin mirip 2 Vector tersebut.

Jika Nilai cos(θ) = 1, menandakan 2 Vector searah, mirip dari sisi arah (direction).

Jika Nilai cos(θ) = 0, (sudut 90°, Vector tegak lurus/perpendicular), menandakan 2 Vector tidak mirip.

Jika Nilai cos(θ) = -1, (sudut 180°, Vector berlawanan arah), menandakan 2 Vector sangat tidak mirip.

Cosine Similarity untuk N Dimensions.Persamaan Cosine Similarity

Dimana

A.B = Dot Product Vector A dan Vector B

||A|| = Magnitude Vector A

||B|| = Magnitude Vector B



Cosine Distance dan Cosine Similarity Part 3

Untuk memahami kenapa perhitungan Cosine Similarity kita akan simulasikan pada Vector space 2 Dimensions.

Jika kita memiliki 2 Vector, p dan q:

a = [3, 3]

b = [6, 2]

Sehingga Cosine Similarity dari a ke b = ~0.89



Cosine Distance dan Cosine Similarity Part 4

Contoh mengukur kemiripan Vector dengan beberapa 
Vector lain menggunakan Cosine Similarity.

Katakanlah kita mempunyai 2 koordinat pada dataset yang kita miliki. 

b = [6, 2] 

c = [7, -4]

Kemudian kita mempunyai data koordinat baru, 

Yaitu:

a = [3, 3]

Kita akan ukur seberapa dekat data-data yang ada di dataset dengan data 
baru a menggunakan Cosine Similarity.

Cosine Similarity Vector a ke b = ~0.89 dan Vector a ke c = ~0.26.  Sehingga bisa 
disimpulkan, Vector a lebih mirip dengan b (nilai cos(θ) a dengan b lebih besar) dibandingkan 
dengan Vector a dengan c (nilai cos(θ) a dengan c lebih kecil).

cos(θ) a dengan b cos(θ) a dengan c



Cosine Distance dan Cosine Similarity Part 5

Pada persamaan Cosine Distance dibawah ini akan menghasilkan nilai 0 sampai 2, atau 0 sampai 1 (jika Vector 
sudah di normalisasi. Baca bagian Unit Vector !). Cosine Distance adalah ekstensi dari Cosine Similarity untuk 
menyatakan bahwa semakin kecil nilai 1-cos(θ), semakin mirip 2 Vector tersebut.

Jika Nilai 1-cos(θ) = 0, menandakan 2 Vector searah, mirip dari sisi arah (direction).

Jika Nilai 1-cos(θ) = 1, (sudut 90°, Vector tegak lurus/perpendicular), menandakan 2 Vector tidak mirip.

Jika Nilai 1-cos(θ) = 2 (1- (-1) = 2), (sudut 180°, Vector berlawanan arah), menandakan 2 Vector sangat tidak mirip.

Cosine Distance untuk N Dimensions.Persamaan Cosine Distance

Dimana

A.B = Dot Product Vector A dan Vector B

||A|| = Magnitude Vector A

||B|| = Magnitude Vector B



Cosine Distance dan Cosine Similarity Part 6

Contoh mengukur kemiripan Vector dengan 
beberapa Vector lain menggunakan Cosine Distance.

Katakanlah kita mempunyai 2 koordinat pada dataset yang kita miliki. 

b = [6, 2] 

c = [7, -4]

Kemudian kita mempunyai data koordinat baru, 

Yaitu:

a = [3, 3]

Kita akan ukur seberapa dekat data-data yang ada di dataset dengan data 
baru a menggunakan Cosine Distance.

Cosine Distance a ke b = ~0.10 dan a ke c = ~0.73.  Sehingga bisa disimpulkan, Vector a 
lebih mirip dengan b (nilai Dcos a dengan b lebih kecil) dibandingkan dengan Vector a 
dengan c (nilai Dcos a dengan c lebih besar).

Dcos a dengan b Dcos a dengan c



Cosine Distance dan Cosine Similarity Part 7

Cosine Similarity Cosine Distance

Makna nilai Semakin besar semakin mirip Semakin kecil semakin mirip

Tujuan Mengukur kemiripan Mengukur perbedaan/jarak

Kegunaan Analisa kemiripan “makna” Text Algoritma Clustering: KNN, K-Means, 
Approximate Nearest Neighbors seperti 
HNSW (Hierarchical Navigable Small World), 
IVF (Inverted File Index).

Tabel perbandingan Cosine Similarity dan Cosine Distance



Cosine Distance dan Cosine Similarity Part 8

Mengapa fungsi Trigonometry cos(θ) muncul pada Cosine Similarity dan Dot Product ?

Pada pembahasan Dot Product pada bagian sebelumnya, persamaan di bawah ini sebenarnya memberitahu kita 
seberapa jauh “bayangan” Vector B yang bekerja (“jatuh”) searah dengan Vector A 

Pembahasan Trigonometry pada bagian 
sebelumnya, menyatakan bahwa:

Dimana:
Hypotenuse = Magnitude dari Vector B, ||B||
cos(θ) = nilai cos sudut (angle) antara Vector A dan Vector B

Sehingga proyeksi/Adjacent untuk komponen Vector B bisa 
dihitung dengan:
Adjacent = ||B||cos(θ)

Oleh karena itu, persamaan 
secara logis mengalikan panjang(magnitude) Vector A dengan 
komponen Vector B (hasil proyeksi/Adjacent/panah (arrow) 
berwarna merah) yang sudah "diluruskan" ke arah Vector A.

Hasil proyeksi/Adjacent (panah (arrow) berwarna merah) bisa dianalogikan 
sebagai hasil proyeksi (projection) atau bayangan  Vector B terhadap 
Vector A.

B

A

Adjacent = ||B||cos(θ)

Projection

θ

Hyp
oten

use
 = ||B

||



Cosine Distance dan Cosine Similarity Part 9

Mengapa fungsi Trigonometry cos(θ) muncul pada Cosine Similarity dan Dot Product ?

Pada pembahasan Cosine Similarity pada bagian sebelumnya, kemudian merujuk pada persamaan Trigonometry untuk mencari cos(θ), 
persamaan Cosine Similarity dibawah ini sebenarnya adalah bentuk perubahan posisi komponen dari persamaan Dot Product. Bahkan 
operasi Dot Product-nya akan menghasilkan hasil yang sama jika Vector telah dinormalisasi (menjadi Unit Vector). Lebih detail pada bagian 
“Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi”.

B

A

Adjacent = ||B||cos(θ)

Projection

θ

Hyp
oten

use
 = ||B

||

Dimana

A.B = Dot Product Vector A dan Vector B

||A|| = Magnitude Vector A

||B|| = Magnitude Vector B

||A|| ||B|| = Total magnitude Vector A dan Vector B

cos(θ) = nilai cos sudut (angle) antara Vector A dan Vector B

Cosine Similarity Dot Product

Pembahasan Trigonometry pada bagian sebelumnya, menyatakan bahwa:



Cosine Distance dan Cosine Similarity Part 10

Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi

Untuk membuktikan pernyataan: Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi, 
kita akan menghitung Cosine Similarity dan Dot Product (dengan setiap Vector-nya dinormalisasi/ menjadi Unit 
Vector).

Menghitung Cosine Similarity Vector A 
dan B:

A = [6, 2]

B = [3, 3]

cos(θ) A dengan B

Menghitung Dot Product Vector A dan B yang sudah dinormalisasi 
menjadi Unit Vector:

A = [6, 2]

B = [3, 3]

Dot Product A dengan B dan sudah dinormalisasi dalam Unit Vector



Cosine Distance dan Cosine Similarity Part 11

Cosine Similarity adalah Dot Product dari dua Vector yang sudah dinormalisasi

Perhitungan pada bagian 
sebelumnya, kita coba plot 
pada graph. Hasil 
perhitungan Cosine 
Similarity sama dengan 
hasil perhitungan Dot 
Product dengan setiap 
Vectornya sudah 
dinormalisasi (dalam Unit 
Vector).

Vector warna orange, 
adalah Vector A dan 
Vector B yang sudah 
dinormalisasi (dalam Unit 
Vector)



Vector Embedding



Vector Embedding Part 1

Dalam konteks Machine Learning dan Artificial Intelligence, Vector Embedding adalah representasi numerik dari data non-numerik (seperti teks, 
gambar, atau audio) ke dalam ruang Vector berdimensi tinggi (high-dimensional space). Proses ini bertujuan untuk memetakan informasi 
semantic (makna) ke dalam koordinat Matematis. Dua data yang memiliki kemiripan makna akan ditempatkan pada posisi yang 
berdekatan dalam ruang Vector tersebut. Vector Embedding tidak ditentukan secara manual oleh manusia, melainkan dihasilkan melalui 
proses Feature Extraction oleh model Deep Learning.

Data Representasi Vector

[5, 2.5]

[6, 2]

[1, 4]

[3, 5]

[3, 4]



Vector Embedding Part 2 | Evolusi Representasi Data (History & Development)

Era Computer Vision (AlexNet - 2012 | Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton)

Sejarah modern Vector Embedding dimulai secara masif pada tahun 2012 melalui paper ImageNet Classification with Deep Convolutional Neural 
Networks atau yang lebih kita kenal sebagai AlexNet. Berikut hasil observasi yang dilakukan oleh para penulis Paper tersebut.

● Terobosan: Model ini membuktikan bahwa Convolutional Neural Networks (CNN) dapat mengekstraksi dan belajar fitur visual 
secara otomatis.

● Hasil: Gambar mentah diubah menjadi feature vector (embedding) berdimensi 4096. Untuk pertama kalinya, gambar dapat 
dibandingkan secara matematis melalui jarak antar Vector, bukan sekadar perbandingan pixel mentah.

Pada Section 6.1, dalam Paper tersebut, para penulis melakukan 
eksperimen lain, selain eksperimen utama dari Paper ini, yaitu Image 
Classification. Perhatikan statement:
 “(Right) Five ILSVRC-2010 test images in the first column. The remaining 
columns show the six training images that produce feature vectors in the 
last hidden layer with the smallest Euclidean distance from the feature 
vector for the test image.”

- Eksperimen Image Retrieval: Penulis menguji kemampuan 
model dengan mengambil 5 gambar dari test set (kolom pertama) 
dan mencari gambar dari training set yang memiliki jarak 
Euclidean Distance terkecil pada Vector fitur 4096-dimensi.

- Keunggulan Ruang Vector (Embedding Space): Hasil 
menunjukkan bahwa: meskipun gambar-gambar tersebut memiliki 
perbedaan pada level pixel, seperti pose, latar belakang, dan 
sudut pandang yang berbeda, model tetap mampu menemukan 
objek yang secara semantik sama (seperti gajah, anjing, atau 
kapal).

- Eksperimen ini membuktikan bahwa lapisan tersembunyi (hidden 
layer) terakhir model tidak sekadar melihat "warna" atau "pixel", 
melainkan membentuk pemahaman konsep objek di dalam 
ruang Vector.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.
pdf ImageNet Classification with Deep Convolutional Neural Networks | University of Toronto

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


Vector Embedding Part 3 | Evolusi Representasi Data (History & Development)

Era Natural Language Processing (Word2Vec - 2013 | Google)

Setelah gambar, dunia NLP mengalami revolusi melalui Word2Vec. Word2Vec memungkinkan kata direpresentasikan 
menggunakan Vector (Word Embedding).

Kekurangan dari model Word Embedding: 

● Tidak Context aware. 1 kata (word) direpresentasikan dengan 1 Vector, sehingga saat proses analisis dengan model ini, 
model tidak melihat surrounding word. 

● Representasi Vector selalu sama, sekalipun konteks berbeda. Misal kata Bank (tempat menyimpan uang) dengan Bank 
(tepi sungai) akan memiliki representasi Vector yang sama. Contoh lain kata dalam Bahasa Indonesia adalah Bisa 
(mampu) dengan Bisa (Racun pada Ular).

● Model tidak bisa mewakili 1 kalimat secara alami. Biasanya butuh proses agregasi, sebab setiap kata pada kalimat akan 
memiliki Vector masing-masing.



Vector Embedding Part 4 | Evolusi Representasi Data (History & Development)

Era Transformers & Attention (Paper: Attention Is All You Need, model BERT & Sentence Transformers - 2017 | Google)

https://arxiv.org/abs/1706.03762 Paper ini memperkenalkan arsitektur Transformer yang menggantikan mekanisme sekuensial 
(seperti RNN) dengan mekanisme Self-Attention. Hal ini berdampak signifikan pada kualitas Vector Embedding:

● Mekanisme Self-Attention: Tidak seperti model sebelumnya yang memproses kata satu per satu, Transformer 
memungkinkan setiap elemen dalam input (kata atau patch gambar) untuk "memperhatikan" (attend to) elemen lainnya 
secara simultan.

● Contextualized Embeddings: Inilah perbedaan terbesarnya. Melalui Self-Attention, Vector yang dihasilkan bersifat dinamis 
(sesuai konteks).

○ Contoh: Kata "Bank" dalam kalimat "I want to save money in the Bank" dan "I was standing near the river Bank”, 
kata “Bisa” (Bahasa Indonesia) dalam kalimat “Saya Bisa melakukannya” dan “Saya keracunan Bisa Ular” akan 
menghasilkan koordinat Vector yang berbeda karena model memperhatikan kata-kata di sekitarnya.

● Sentence Embeddings: Seluruh kalimat atau paragraf kini dapat diringkas menjadi satu Vector tunggal yang 
merepresentasikan seluruh ide pikiran.

https://arxiv.org/abs/1706.03762


Vector Embedding Part 5 | Evolusi Representasi Data (History & Development)

Era Modern (adaptasi Arsitektur Transformers untuk Computer Vision): Vision Transformers (ViT) & Multi-Modal (CLIP)

ViT adalah adaptasi langsung dari arsitektur Transformer (dari paper Attention Is All You Need) dengan judul paper An Image is 
Worth 16x16 Words: Transformers for Image Recognition at Scale (https://arxiv.org/abs/2010.11929) untuk data gambar.

● Mekanisme "Patches": Berbeda dengan CNN(Convolutional Neural Networks ) yang memproses gambar dengan sliding 
window, ViT memecah gambar menjadi potongan-potongan kecil (patches) dan memperlakukannya seperti urutan kata 
dalam sebuah kalimat.

● Global Context: Melalui Self-Attention, setiap bagian gambar dapat berinteraksi dengan bagian lainnya secara global. Hal 
ini menghasilkan Embedding yang sangat baik dibandingkan CNN yang bersifat lokal.

Selain itu, perkembangan terkini telah mencapai tahap Multi-Modal Learning, di mana model seperti CLIP (Contrastive 
Language-Image Pre-training) dari OpenAI mampu menyatukan dua dunia yang berbeda.  CLIP memetakan teks dan gambar ke 
dalam ruang Vector yang sama (Shared Vector Space). Hal ini memungkinkan sistem untuk mencari gambar menggunakan 
deskripsi teks (dan sebaliknya) hanya dengan menghitung Cosine Similarity antara Vector teks dan Vector gambar.

https://arxiv.org/abs/2010.11929


Vector Embedding Part 6 | Dimana Vector Embedding diambil dari Model

Secara umum Deep Learning Model memiliki 2 peran,

- Memahami data (merepresentasikan data)
- Mengambil/Membuat keputusan (decision)

Untuk memahami secara visual dimana Vector Embedding diambil, kita akan kembali mereview kembali Arsitektur dari AlexNet yang sudah kita bahas pada 
bagian sebelumnya. Dalam Paper tersebut, para penulis secara eksplisit menyebut: “Another way to probe the network’s visual knowledge is to consider 
the feature activations induced by an image at the last, 4096-dimensional hidden layer”.

conv1 conv2 conv3 conv4 conv5 FC6

96 256 384 384 256 4096 4096

1000

Jika kita perhatikan pada visualisasi Arsitektur Network AlexNet, last 
hidden layer adalah FC7. Layer FC7 menghasilkan Vector berdimensi 
4096. Ini adalah last hidden layer yang menyimpan informasi 
"pemahaman" fitur secara menyeluruh sebelum data tersebut masuk ke 
lapisan klasifikasi (FC8). FC8 adalah Decision Layer yang berisi 1000 
neuron (sesuai jumlah label pada Datasets ImageNet 
https://www.image-net.org) yang bertugas untuk membuat keputusan, 
yaitu menebak label.

Catatan: FC = Fully Connected
FC7 FC8

Secara umum, Vector Embedding diambil 
sebelum Output Decision Layer.

https://www.image-net.org


Vector Embedding Part 7 | Melatih Language Model sederhana sebagai Vector Embedding Model

Sebelum menggunakan Model yang lebih powerful untuk menghasilkan Vector Embedding, untuk mendapatkan intuisi yang lebih baik dari mana Vector 
Embedding dihasilkan, kita akan melatih Language Model sederhana untuk kita jadikan sebagai Vector Embedding Model. 

Cara kerja dari Model yang akan kita buat menggunakan mekanisme Training: Konteks vs Target.

Mekanisme Konteks vs Target ini menggunakan BiGram. Secara teknis, kita sedang mengajari model: "Jika kata 'penyanyi' muncul, kemungkinan besar kata 
apa yang ada di dekatnya?". Output misalnya bisa: “piano”, “gitar”, “vokalis”.

● X (Input): One-Hot Encoding dari kata pusat.
● Y (Output): One-Hot Encoding dari kata tetangga.

Dimensi Vector Embedding dari model ini adalah 2. Artinya, kita memaksa model untuk merangkum seluruh makna kata ke dalam koordinat 2D (x, y).



Vector Embedding Part 8 | Melatih Language Model sederhana sebagai Vector Embedding Model

Dataset

Dataset untuk melatih model berupa artikel kecil kurang 
dari 50 baris. 

“Anda bisa menambahkannya, Notebook dari Demo 
section ini akan disertakan di akhir section.”



Vector Embedding Part 9 | Melatih Language Model sederhana sebagai Vector Embedding Model

Membuat Dataset BiGram

Sesuai namanya, data BiGram terdiri dari 2 kata yang 
berurutan atau berdekatan.

Sebagai contoh, jika kita memiliki text:

Google adalah perusahaan teknologi dari Negara 
Amerika.

Setelah melalui data cleansing (misal menghilangkan 
stopwords). Data akan menjadi seperti berikut ini:

[“google”, “perusahaan”, “teknologi”, “negara”, “amerika”]

Kemudian proses BiGram akan menghasilkan data seperti 
berikut ini:

[[“google”, “perusahaan”], [“perusahaan”, “teknologi”], 
[“teknologi”, “negara”], [“negara”, “amerika”]]



Vector Embedding Part 10 | Melatih Language Model sederhana sebagai Vector Embedding Model

Membangun Vocabulary

Seperti Language Model pada umumnya, kita juga 
membutuhkan daftar kosakata yang akan digunakan oleh 
Model yang akan kita bangun. Vocabulary dalam model ini 
berbentuk simple Python Dictionary untuk kebutuhan 
lookup table.



Vector Embedding Part 11 | Melatih Language Model sederhana sebagai Vector Embedding Model

Merepresentasikan Vocabulary dalam bentuk One Hot 
Encoding/ Sparse Vector

Saat proses training, Model yang kita bangun 
membutuhkan input data numerik. Sehingga Data training 
harus kita ubah menjadi data numerik. Metode yang kita 
pilih adalah metode One Hot Encoding/ Sparse Vector. 
Anda bisa membaca kembali apa itu Sparse Vector pada 
bagian sebelumnya.



Vector Embedding Part 12 | Melatih Language Model sederhana sebagai Vector Embedding Model

Mengimplementasikan Arsitektur Model menggunakan 
Pytorch

Model yang kita bangun bisa disebut next word prediction 
model. Model ini akan memprediksi kata berikutnya 
berdasarkan input. Jika melihat kembali Dataset BiGram 
yang kita buat sebelumnya, secara teknis kita sedang 
mengajari model: “Jika kata penyanyi muncul, 
kemungkinan besar apa kata yang ada di dekatnya ?” .

Input dan Output size model ini sama, yaitu jumlah 
keseluruhan Vocabulary yang kita buat sebelumnya. 
Untuk mempermudah penjelasan Vector Embedding 
dalam section materi ini dan menghilangkan step 
Dimensionality Reduction, hidden layer kita buat menjadi 
2 Neuron (lihat: embed_size). Kita paksa langsung last 
hidden layer merangkum seluruh makna data dalam ruang 
2 Dimensi saja.



Vector Embedding Part 13 | Melatih Language Model sederhana sebagai Vector Embedding Model

Validasi Model dengan mencoba memprediksi next 
word berdasarkan input word

 Menggunakan input kata: “band” , model memprediksi 
outputnya dengan kata: “musik”.

Tidak begitu buruk untuk Language Model kecil 
dengan 2 Network layer.



Vector Embedding Part 14 | Melatih Language Model sederhana sebagai Vector Embedding Model

Mengkonversi Model menjadi Embedding Model

Mengkonversi Model menjadi Embedding Model dengan 
cara mengambil last hidden layer dari model. Dengan 
jumlah 2 Neuron pada last hidden layer, Vector Embedding 
yang dihasilkan oleh model ini akan memiliki dimensi 2 
Dimensi.

2

31

FC1 FC2

FC1 adalah last hidden layer sebelum decision layer, yaitu 
FC2. Layer ini yang kita gunakan untuk menghasilkan 
Vector Embedding.



Vector Embedding Part 15 | Melatih Language Model sederhana sebagai Vector Embedding Model

Normalisasi Vector dan melakukan Vector 
Search dengan Cosine Similarity

Sebelum melakukan Vector Search, kita terlebih 
dahulu menormalisasi seluruh Vector Embedding 
yang merepresentasikan setiap kata yang ada di 
Vocabulary kita. Jika kita ingat pada pembahasan 
sebelumnya, Cosine Similarity hanya butuh arah 
(direction), tidak membutuhkan besaran/panjang 
(magnitude).

Pada pencarian dengan input kata: “penyanyi” 
dan top_k=5, Vector Search berhasil 
mendapatkan 5 kata dengan koordinat terdekat. 
Yaitu “vocalis”, “piano”, “alat”, “band” dan “nyanyi”.



Vector Embedding Part 16 | Melatih Language Model sederhana sebagai Vector Embedding Model

Memvisualisasikan seluruh Vocabulary dalam 
ruang 2 Dimensi

Pada ruang 2 Dimensi, Vector Embedding yang 
dihasilkan oleh Language Model kecil yang kita 
buat berhasil menempatkan kata yang saling 
berkaitan satu sama lain pada koordinat yang 
berdekatan. Misalnya kedelai dan nasi, playstation 
dan game.



Vector Embedding Part 17 | Melatih Language Model sederhana sebagai Vector Embedding Model

URL Notebook Melatih NLP Model sederhana sebagai Vector Embedding Model

https://colab.research.google.com/drive/1oTlaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing

Anda bisa bereksperimen sendiri dengan Notebook ini, untuk mendapatkan intuisi yang lebih baik tentang darimana Vector Embedding 
dihasilkan.

https://colab.research.google.com/drive/1oTlaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing


Vector Embedding Part 18 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Menghasilkan Sentence Embedding menggunakan “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”

Model sentence-transformers/paraphrase-multilingual-mpnet-base-v2 adalah salah satu Embedding Model yang dikembangkan oleh 
tim Sentence Transformers (SBERT) yang diperuntukan menghasilkan Vector Embedding untuk kebutuhan Sentence Similarity, Text 
Similarity dan Semantic Text Search.

Model ini dilatih khusus untuk memahami bahwa dua kalimat dengan kata-kata berbeda bisa memiliki makna yang sama (paraphrase). 
Model ini menghasilkan Vector Embedding dengan ukuran 768 Dimensi.

Menampilkan 10 value pertama dari Vector Embedding.



Vector Embedding Part 19 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Sentence Similarity Vector Embedding yang dihasilkan “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”

Perhatikan bahwa hasil terbaik adalah "saya sedang tidak enak 
badan" dan "saya merasa kesehatan saya sedang terganggu". 
Keduanya tidak memiliki kata "menurun" atau "fisik", tapi secara 
koordinat Vector dan menggunajan Metric Cosine Similarity, 
mereka adalah tetangga terdekat (Nearest Neighbors). 
“sentence-transformers/paraphrase-multilingual-mpnet-base-
v2” sangat baik dalam memahami “jika” dua kalimat memiliki 
makna (paraphrase) yang sama.



Vector Embedding Part 20 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Menghasilkan Image Embedding menggunakan “facebook/dinov2-small”

Model facebook/dinov2-small adalah salah satu Embedding Model berdasarkan Arsitektur ViT (Vision Transformers) yang dikembangkan oleh tim Meta 
dan diperuntukan untuk menghasilkan Vector Embedding dari gambar (image). Kemudian hasil Vector Embedding Image bisa kita gunakan untuk task 
lebih lanjut. Misalnya image to image search atau bahkan melatih zero shot image classification.

Sesuai namanya “facebook/dinov2-small”, model ini menghasilkan Vector Embedding dengan ukuran 384 Dimensi. Untuk level produksi, anda 
mungkin perlu menggunakan varian Model DINO yang lebih besar.

Menampilkan 10 value pertama dari Vector Embedding.



Vector Embedding Part 21 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Image Similarity Vector Embedding yang dihasilkan “facebook/dinov2-small”

Simulasi image to image search menggunakan model “facebook/dinov2-small”. Secara umum step-step yang dilakukan adalah data indexing (ada proses 
Image Embedding), simpan data ke Vector Store (dalam simulasi ini in memory pada Python List), Image Vector Search (ada proses Image Embedding sebelum 
Query).



Vector Embedding Part 22 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Image Similarity Vector Embedding yang dihasilkan “facebook/dinov2-small”

Hasil Simulasi image to image search 
menggunakan model 
“facebook/dinov2-small” menunjukan 
model ini bisa sangat baik dalam 
membandingkan Semantic Visual pada satu 
gambar dengan gambar lainnya, meskipun 
secara struktur pixel, latar belakang, warna, 
bahkan dengan bentuk yang berbeda.



Vector Embedding Part 23 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Text to Image Similarity atau Image to Image Similarity dan menghasilkan Vector Embedding menggunakan  Multimodal Model 
“sentence-transformers/clip-ViT-B-32-multilingual-v1”

“sentence-transformers/clip-ViT-B-32-multilingual-v1” adalah implementasi dari CLIP (Contrastive Language–Image Pre-training) milik OpenAi yang 
dikembangkan oleh tim Sentence Transformers (SBERT).  Model ini dilatih untuk memahami hubungan antara teks dan gambar dalam satu ruang Vector 
yang sama. Memungkin kita mencari kemiripan antara text (yang mendeskripsikan sebuah visual) dengan gambar. 

Misalnya anda memasukan query: “Minum kopi sepertinya enak”, kemudian model menghasilkan Vector Embedding representasi dari query tersebut. Selanjutnya 
Vector Embedding tersebut digunakan sebagai input untuk Vector Search. Menggunakan metrics “misalnya” Cosine Similarity, hasil mungkin akan berupa gambar 
orang sedang membuat kopi, gambar kopi di kebun kopi, gambar orang minum kopi di cafe.



Vector Embedding Part 24 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Text to Image Similarity atau Image to Image Similarity dan menghasilkan Vector Embedding menggunakan  Multimodal Model 
“sentence-transformers/clip-ViT-B-32-multilingual-v1”

Simulasi Multimodal search menggunakan model “sentence-transformers/clip-ViT-B-32-multilingual-v1. Secara umum step-step yang dilakukan adalah 
data indexing (ada proses Image Embedding), simpan data ke Vector Store (dalam simulasi ini in memory pada Python List), Image/Text Vector Search (ada 
proses Image Embedding sebelum Query).



Vector Embedding Part 25 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

Mengukur Text to Image Similarity atau Image to Image Similarity dan menghasilkan Vector Embedding menggunakan  Multimodal Model 
“sentence-transformers/clip-ViT-B-32-multilingual-v1”

Hasil Simulasi Multimodal search 
menggunakan model 
“sentence-transformers/clip-ViT-B-32-m
ultilingual-v1” menunjukan model ini bisa 
sangat baik dalam membandingkan text yang 
mendeskripsikan sebuah visual dengan 
visual pada gambar.



Vector Embedding Part 26 | Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

URL Notebook Menggunakan Pre-trained Embedding Model untuk menghasilkan Vector Embedding

https://colab.research.google.com/drive/1uQIxkB5wJFzNmj2eIg5IFxC7kBEE7Sma?usp=sharing 

Anda bisa bereksperimen sendiri dengan Notebook ini, untuk mendapatkan intuisi bagaimana cara menghasilkan Vector Embedding dari 
pre-trained model.

https://colab.research.google.com/drive/1uQIxkB5wJFzNmj2eIg5IFxC7kBEE7Sma?usp=sharing


Vector Database



Vector Database Part 1

Bayangkan kita memiliki jutaan foto dan dokumen, namun semuanya tidak memiliki nama file. Database tradisional akan sulit pada 
beberapa kasus ini. Di sinilah Vector Database berperan. Ia tidak menyimpan data berdasarkan 'label' atau 'nama', melainkan 
berdasarkan 'posisi' atau 'makna' dalam ruang multidimensi. Dengan teknologi ini, kita tidak lagi bertanya kepada komputer 
'Cari dokumen yang mengandung kata X', melainkan 'Cari semua data yang memiliki nuansa, feels atau bentuk yang mirip dengan 
input saya'. Inilah fondasi utama yang memungkinkan AI memiliki memory yang terstruktur dan sangat cepat.

Beberapa alasan kita membutuhkan Vector Database, dibandingkan kita menyimpan Vector Embedding pada in memory di level 
code, misalnya List atau Dictionary.

● Penyimpanan Efektif: Dioptimalkan khusus untuk menyimpan Dense Vectors hasil dari Embedding Model CLIP, DINO, 
MPNet, Open Ai Embedding atau Embedding Model Lain.

● Indexing Cepat: Menggunakan algoritma ANN (Approximate Nearest Neighbors) seperti HNSW atau IVFFlat untuk 
proses pencarian. Jika kita menggunakan metode tradisional atau bahkan melakukan sort manual, cara ini sangat tidak 
scalable. Sebab, metode tradisional atau sort manual melakukan perbandingan satu persatu ke setiap row Vector 
Embedding yang ada.

● Kebutuhan Memory Jangka Panjang: Jika anda pernah mendengar atau bahkan membangun langsung aplikasi yang 
bertumpu pada Retrieval-Augmented Generation (RAG) seperti Chatbot yang memanfaatkan LLM (Large Language 
Model), anda membutuhkan memory jangka panjang untuk menyimpan konteks yang akan anda lookup berdasarkan 
prompt/query dari pengguna.



Vector Database Part 2

Ada banyak Database Vendor yang menyediakan/mengimplementasikan Vector Store untuk kebutuhan Vector Search. Kita akan 
mencoba menggunakan 3 Vector Store yang secara umum mewakili beberapa kebutuhan dan kondisi infrastruktur dalam suatu 
organisasi. Yaitu Postgre(ext: pgvector), Elasticsearch, dan Qdrant. 

 PostgreSQL (pgvector) untuk solusi All-in-One

● Karakteristik: Ekstensi dari RDBMS paling populer di dunia.
● Mengapa menggunakan ini? Cocok untuk aplikasi yang sebelumnya sudah menggunakan PostgreSQL, sebab kita tidak 

membutuhkan infrastruktur baru khusus untuk Vector Store (instalasi terpisah).
● Kelebihan: Mendukung transaksi ACID, sangat stabil, dan sekarang sudah mendukung algoritma Approximate Nearest 

Neighbors (ANN) HNSW dan IVFFlat yang digunakan langsung sebagai mekanisme Indexing.

https://www.postgresql.org/ 

https://github.com/pgvector/pgvector 

https://www.postgresql.org/
https://github.com/pgvector/pgvector


Vector Database Part 3

PostgreSQL (pgvector) untuk solusi All-in-One

Memasang ekstensi pgvector:

Sebelum melakukan kompilasi, sistem memerlukan paket pengembangan (development headers) yang sesuai dengan versi PostgreSQL yang digunakan. Dalam hal ini, kita menggunakan PostgreSQL versi 
14.

sudo apt-get update && sudo apt-get install -y postgresql-server-dev-14 build-essential git

Berpindah ke direktori sementara:

cd /tmp 

Melakukan kloning repositori pgvector dengan branch spesifik v0.8.1: 

git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git 

Masuk ke direktori repositori:

cd pgvector 

Membersihkan residu kompilasi sebelumnya (jika ada) :

make clean 

Tahap Kompilasi source code. Penggunaan OPTFLAGS="" memastikan kompatibilitas instruksi CPU yang lebih luas: 

make OPTFLAGS="" 

Menginstal binary ekstensi ke direktori library PostgreSQL :

make install 



Vector Database Part 4

PostgreSQL (pgvector) untuk solusi All-in-One

Mengaktifkan ekstensi Vector

Perintah SQL untuk mengaktifkan fitur Vector: 

CREATE EXTENSION IF NOT EXISTS vector; 

Verifikasi instalasi dan versi ekstensi:

SELECT extname, extversion FROM pg_extension WHERE extname = 'vector';

Membuat tabel contoh: document_embeddings dengan kolom embedding kita set dimensinya: 768, sesuai ukuran output Embedding model yang akan kita gunakan, 
yaitu “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”.

CREATE TABLE document_embeddings (

   id serial PRIMARY KEY,

   title TEXT,

   content TEXT,

   source TEXT,

   embedding vector(768),  -- Assuming you're using a 768-dim embedding

   last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP

);

Membuat Index menggunakan dengan HNSW:

CREATE INDEX ON document_embeddings USING hnsw (embedding vector_cosine_ops);



Vector Database Part 5

PostgreSQL (pgvector) untuk solusi All-in-One

Data ingestion dari dokumen seperti PDF, Docx, dan PPTx file



Vector Database Part 6

PostgreSQL (pgvector) untuk solusi All-in-One

Melakukan Vector Search menggunakan metrics Cosine Similarity

Pgvector mendukung distance function:

● <-> - L2 distance
● <#> - (negative) inner product
● <=> - cosine distance
● <+> - L1 distance
● <~> - Hamming distance (binary vectors)
● <%> - Jaccard distance (binary vectors)

Pgvector by default tidak menyediakan fungsi Cosine Similarity, untuk 
menggunakan fungsi Cosine Similarity, cukup gunakan trik:

Cosine Similarity = 1 - (Cosine Distance) 



Vector Database Part 7

PostgreSQL (pgvector) untuk solusi All-in-One

Melakukan Vector Search menggunakan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen dengan query tertentu.



Vector Database Part 8

Qdrant untuk kebutuhan Native Vector Store

● Karakteristik: Database yang dirancang khusus dari awal untuk mengelola data Vector (Vector-Native).
● Implementasi: Pilihan utama untuk kebutuhan dengan prioritas tinggi pada performa dan efisiensi. Dibangun menggunakan 

bahasa pemrograman Rust, Qdrant menawarkan kecepatan pemrosesan tinggi dan kemudahan integrasi melalui API.
● Kelebihan: Memiliki kemampuan advanced filtering) yang sangat presisi dan cepat, serta manajemen memori yang optimal 

untuk Dataset skala besar.

https://qdrant.tech/ 

https://qdrant.tech/


Vector Database Part 9

Qdrant untuk kebutuhan Native Vector Store

Data ingestion dari dokumen seperti PDF, Docx, dan PPTx file

Insight penting: saat membuat collection di Qdrant, kita sekaligus menentukan Embedding Dimension dan Distance function yang akan kita gunakan. Ukuran Embedding 
Dimension = 768, sesuai ukuran output Embedding model yang akan kita gunakan, yaitu “sentence-transformers/paraphrase-multilingual-mpnet-base-v2”



Vector Database Part 10

Qdrant untuk kebutuhan Native Vector Store

Melakukan Vector Search menggunakan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen dengan query tertentu.



Vector Database Part 11

Elasticsearch untuk solusi Hybrid Search

● Karakteristik: Standar industri untuk full text search yang kini mendukung Dense Vector Search.
● Implementasi: Sangat direkomendasikan untuk skenario Hybrid Search. Memungkinkan integrasi antara pencarian kata 

kunci tradisional (keyword-based search) dengan semantic search berbasis makna (vector-based search) secara simultan.
● Kelebihan: Memiliki skalabilitas tinggi untuk volume data masif, serta dilengkapi dengan fitur analitik dan pemantauan data 

yang sangat komprehensif. Selain itu mirip dengan kasus PostgreSQL. Ketika kita sudah memiliki infrastruktur untuk 
Elasticsearch, kita tidak perlu lagi membutuhkan infrastruktur baru yang dikhususkan untuk pemasangan Vector Store 
terpisah.

https://www.elastic.co/docs/solutions/search/vector 

https://www.elastic.co/search-labs/blog/vector-search-set-up-elasticsearch 

https://www.elastic.co/docs/solutions/search/vector
https://www.elastic.co/search-labs/blog/vector-search-set-up-elasticsearch


Vector Database Part 12

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Field Mapping untuk field imageVector
Field Mapping untuk field imageVector

● Tipe Data (dense_vector): Field ini dikonfigurasi khusus untuk 
menyimpan high-dimensional embeddings yang dihasilkan oleh model 
AI.

● Dimensi (dims: 512): Konfigurasi ini disamakan dengan dimensi output 
dari model CLIP-ViT-B-32, memastikan integritas data pada saat 
proses indexing.

● Metrics (cosine): Menggunakan Cosine Similarity sebagai Vector 
metrics. Disesuaikan dengan model CLIP, karena orientasi Vector lebih 
menentukan makna semantic dibandingkan besaran/panjang 
(magnitude).

● Untuk kebutuhan Approximate Nearest Neighbors, Kita menggunakan 
Scalar Quantization (int8). Teknik ini mengonversi Vector dari format 
float32 ke int8, yang secara drastis bisa mengurangi konsumsi Memori 
(RAM).

Parameter Indexing (HNSW) https://www.elastic.co/search-labs/blog/hnsw-graph 

● m = 24.
● ef_construction = 128

https://www.elastic.co/search-labs/blog/hnsw-graph


Vector Database Part 13

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Data Ingestion dari file gambar



Vector Database Part 14

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen dengan query gambar tertentu



Vector Database Part 15

Elasticsearch untuk solusi Hybrid Search

Melakukan Vector Search image to image search menggunakan Model sentence-transformers/clip-ViT-B-32 dan metrics Cosine Similarity

Menampilkan hasil pencarian dokumen menggunakan query dengan gambar tertentu

Menggunakan metrics Cosine Similarity, 
sentence-transformers/clip-ViT-B-32 
sangat baik dalam memahami 
kesamaan visual dari dua gambar atau 
lebih dengan cara membandingkan 
Vector Embedding dari gambar query 
dengan gambar yang ada di Index 
Elasticsearch.



Honorable Mentions: Solusi Vector Store Lainnya

Selain tiga platform utama yang telah dibahas, terdapat beberapa solusi lain yang memiliki peran signifikan dalam industri:

1. Pinecone https://www.pinecone.io/ 

● Karakteristik: Vector Database berbasis cloud-native yang sepenuhnya dikelola (fully managed).
● Keunggulan: Menawarkan kemudahan operasional karena pengguna tidak perlu mengelola infrastruktur (serverless). Sangat populer di kalangan 

Developer karena integrasinya yang cepat dengan ekosistem LLM seperti OpenAI dan LangChain.

2. Milvus https://milvus.io/ 

● Karakteristik: open-source, skala Enterprise.
● Keunggulan: Menawarkan Vector Database performa tinggi dan scalable.

3. Chroma https://www.trychroma.com/ 

● Karakteristik: open-source dan dirancang khusus untuk memudahkan pembuatan aplikasi berbasis AI.
● Keunggulan: Menawarkan kemudahan. Fokus pada developer experience (DX) dengan kemudahan instalasi (bisa berjalan secara in-memory atau 

on-premise) dan sangat efisien untuk fase prototyping hingga produksi skala menengah.

Vector Database Part 16

https://www.pinecone.io/
https://milvus.io/
https://www.trychroma.com/


● [Desmos] Vector Projection Dot Product: https://www.desmos.com/calculator/cd8w4ic6rt
● [Desmos] Dot Product https://www.desmos.com/calculator/617aaa4053
● [Desmos] Cosine Similarity https://www.desmos.com/calculator/678bd69c20
● [Desmos] Euclidean Distance https://www.desmos.com/calculator/bce9c211b0
● [Desmos] Simulate Euclidean Distance https://www.desmos.com/calculator/2qpnvqzjh2
● [Desmos] Trigonometry https://www.desmos.com/calculator/wgjxkrmeud
● [Desmos] Cross Product https://www.desmos.com/3d/961c13b698
● [Desmos] Vector Addition https://www.desmos.com/calculator/3a550e6b78
● [Desmos] Vector Multiplication with scalar https://www.desmos.com/calculator/745e2fd4c6 
● [Desmos] 3D Vector https://www.desmos.com/3d/029e5691bc 
● [Notebook Google Colab] Language Model for Embedding Model from scratch 

https://colab.research.google.com/drive/1oTlaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing
● [Notebook Google Colab] Using pre-trained Embedding Model 

https://colab.research.google.com/drive/1uQIxkB5wJFzNmj2eIg5IFxC7kBEE7Sma?usp=sharing
● [Github] Image to Image search with Elasticsearch Vector Store and sentence-transformers/clip-ViT-B-32 

https://github.com/musobarlab/reactjs-elasticsearch-auto-complete-example/tree/master/imageembed  

Useful Links

https://www.desmos.com/calculator/cd8w4ic6rt
https://www.desmos.com/calculator/617aaa4053
https://www.desmos.com/calculator/678bd69c20
https://www.desmos.com/calculator/bce9c211b0
https://www.desmos.com/calculator/2qpnvqzjh2
https://www.desmos.com/calculator/wgjxkrmeud
https://www.desmos.com/3d/961c13b698
https://www.desmos.com/calculator/3a550e6b78
https://www.desmos.com/calculator/745e2fd4c6
https://www.desmos.com/3d/029e5691bc
https://colab.research.google.com/drive/1oTlaXgx9rTm3t0SxAuijMJnEZYk0_NB5?usp=sharing
https://colab.research.google.com/drive/1uQIxkB5wJFzNmj2eIg5IFxC7kBEE7Sma?usp=sharing
https://github.com/musobarlab/reactjs-elasticsearch-auto-complete-example/tree/master/imageembed
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